Suppr超能文献

巴西亚马逊南部的生物产量损失:利用智能手机辅助植物病害诊断数据

Biotic Yield Losses in the Southern Amazon, Brazil: Making Use of Smartphone-Assisted Plant Disease Diagnosis Data.

作者信息

Hampf Anna C, Nendel Claas, Strey Simone, Strey Robert

机构信息

Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.

Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Front Plant Sci. 2021 Apr 15;12:621168. doi: 10.3389/fpls.2021.621168. eCollection 2021.

Abstract

Pathogens and animal pests (P&A) are a major threat to global food security as they directly affect the quantity and quality of food. The Southern Amazon, Brazil's largest domestic region for soybean, maize and cotton production, is particularly vulnerable to the outbreak of P&A due to its (sub)tropical climate and intensive farming systems. However, little is known about the spatial distribution of P&A and the related yield losses. Machine learning approaches for the automated recognition of plant diseases can help to overcome this research gap. The main objectives of this study are to (1) evaluate the performance of Convolutional Neural Networks (ConvNets) in classifying P&A, (2) map the spatial distribution of P&A in the Southern Amazon, and (3) quantify perceived yield and economic losses for the main soybean and maize P&A. The objectives were addressed by making use of data collected with the smartphone application . The core of the app's functioning is the automated recognition of plant diseases via ConvNets. Data on expected yield losses were gathered through a short survey included in an "expert" version of the application, which was distributed among agronomists. Between 2016 and 2020, users collected approximately 78,000 georeferenced P&A images in the Southern Amazon. The study results indicate a high performance of the trained ConvNets in classifying 420 different crop-disease combinations. Spatial distribution maps and expert-based yield loss estimates indicate that maize rust, bacterial stalk rot and the fall armyworm are among the most severe maize P&A, whereas soybean is mainly affected by P&A like anthracnose, downy mildew, frogeye leaf spot, stink bugs and brown spot. Perceived soybean and maize yield losses amount to 12 and 16%, respectively, resulting in annual yield losses of approximately 3.75 million tonnes for each crop and economic losses of US$2 billion for both crops together. The high level of accuracy of the trained ConvNets, when paired with widespread use from following a citizen-science approach, results in a data source that will shed new light on yield loss estimates, e.g., for the analysis of yield gaps and the development of measures to minimise them.

摘要

病原体和有害动物(P&A)是全球粮食安全的重大威胁,因为它们直接影响粮食的数量和质量。巴西南部亚马逊地区是巴西大豆、玉米和棉花产量最高的国内地区,由于其(亚)热带气候和集约化种植系统,特别容易受到P&A爆发的影响。然而,关于P&A的空间分布以及相关的产量损失,人们了解得很少。用于自动识别植物病害的机器学习方法有助于填补这一研究空白。本研究的主要目标是:(1)评估卷积神经网络(ConvNets)在分类P&A方面的性能;(2)绘制巴西南部亚马逊地区P&A的空间分布图;(3)量化主要大豆和玉米P&A造成的预期产量和经济损失。通过利用智能手机应用程序收集的数据实现了这些目标。该应用程序功能的核心是通过ConvNets自动识别植物病害。关于预期产量损失的数据是通过该应用程序“专家版”中包含的一项简短调查收集的,该版本分发给了农学家。2016年至2020年期间,用户在巴西南部亚马逊地区收集了约78000张带有地理参考的P&A图像。研究结果表明,经过训练的ConvNets在对420种不同的作物病害组合进行分类方面表现出色。空间分布图和基于专家的产量损失估计表明,玉米锈病、细菌性茎腐病和草地贪夜蛾是最严重的玉米P&A,而大豆主要受到炭疽病、霜霉病、蛙眼叶斑病、椿象和褐斑病等P&A的影响。预计大豆和玉米的产量损失分别为12%和16%,导致每种作物每年的产量损失约375万吨,两种作物的经济损失总计20亿美元。经过训练的ConvNets的高准确率,再加上公民科学方法的广泛应用,产生了一个新的数据源,将为产量损失估计提供新的思路,例如用于分析产量差距以及制定尽量减少产量差距的措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a820/8083370/13faa56b5454/fpls-12-621168-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验