Suppr超能文献

一种新型的感染相关炎症反应相关基因特征可预测食管鳞状细胞癌的预后。

A Novel Infection-Related Inflammatory Response-Related Genes Signature Predicts the Prognosis of Esophageal Squamous Cell Carcinoma.

作者信息

Kong Jinyu, Liu Yiwen, Wang Jian, Qian Mengfan, Sun Wei, Xing Ling

机构信息

School of Information Engineering, Henan University of Science and Technology, Luoyang, China.

Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.

出版信息

Clin Med Insights Oncol. 2024 Sep 13;18:11795549241275666. doi: 10.1177/11795549241275666. eCollection 2024.

Abstract

BACKGROUND

Our previous research showed that () infection can activate the inflammatory signaling pathway and promotes the malignancy development of esophageal squamous cell carcinoma (ESCC). However, the prognostic significance of inflammatory response-related genes (IRRGs) in -infected ESCC requires further elucidation. Hence, our study constructed a prognostic signature based on and IRRGs to forecast the survival of patients with ESCC, which may provide insight into new treatment options for ESCC patients.

METHODS

Differentially expressed genes (DEGs) were identified in -infected and -uninfected ESCC cell by RNA sequencing. A risk model was constructed and validated using the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database by using univariate Cox regression analysis, LASSO, and the multivariate Cox regression analysis. Kaplan-Meier analysis was carried out to compare the overall survival (OS) between high-risk and low-risk groups. Single-sample gene set enrichment analysis was used to analyze the immune cell infiltration. The Genomics of Drug Sensitivity in Cancer database was used to predict drug sensitivity.

RESULTS

There were 365 DEGs between the -infected and -uninfected groups. Four genes including DKK1, ESRRB, EREG, and RELN were identified to construct the prognostic risk model ( = .012, C-index = 0.73). In both the training and validation sets, patients had a considerably shorter OS in the high-risk group than those in the low-risk group ( < .05). A nomogram was established using the risk score, gender, and N stage which could effectively forecast the prognosis of patients ( = .016, C-index = 0.66). The high-risk group displayed lower immune infiltrating cells, such as activated dendritic cells, type 2 T helper cells, and neutrophils ( < .05). A total of 41 drugs, including dactinomycin, luminespib, and sepantronium bromide, had a significant difference in IC50 between the 2 subgroups.

CONCLUSION

We demonstrated the potential of a novel signature constructed from 4 -related IRRGs for prognostic prediction in ESCC patients.

摘要

背景

我们之前的研究表明,()感染可激活炎症信号通路并促进食管鳞状细胞癌(ESCC)的恶性发展。然而,炎症反应相关基因(IRRGs)在感染的ESCC中的预后意义仍需进一步阐明。因此,我们的研究基于()和IRRGs构建了一个预后特征模型,以预测ESCC患者的生存情况,这可能为ESCC患者的新治疗选择提供思路。

方法

通过RNA测序在感染和未感染的ESCC细胞中鉴定差异表达基因(DEGs)。使用单变量Cox回归分析、LASSO和多变量Cox回归分析,利用癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)构建并验证风险模型。进行Kaplan-Meier分析以比较高风险组和低风险组之间的总生存期(OS)。使用单样本基因集富集分析来分析免疫细胞浸润。利用癌症药物敏感性基因组数据库预测药物敏感性。

结果

感染组和未感染组之间有365个DEGs。鉴定出包括DKK1、ESRRB、EREG和RELN在内的四个基因来构建预后风险模型(=0.012,C指数=0.73)。在训练集和验证集中,高风险组患者的OS均明显短于低风险组患者(<.05)。使用风险评分、性别和N分期建立了一个列线图,可有效预测患者的预后(=0.016,C指数=0.66)。高风险组显示出较低的免疫浸润细胞,如活化树突状细胞、2型辅助性T细胞和中性粒细胞(<.05)。共有41种药物,包括放线菌素、鲁米斯匹布和塞潘溴铵,在两个亚组之间的IC50有显著差异。

结论

我们证明了由4个与()相关的IRRGs构建的新型特征模型在ESCC患者预后预测中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5c2/11401022/9296f3b63b5f/10.1177_11795549241275666-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验