Suppr超能文献

利用可穿戴设备进行生活方式剖析以及对血糖正常或糖尿病前期个体的葡萄糖代谢进行预测。

Lifestyle Profiling Using Wearables and Prediction of Glucose Metabolism in Individuals with Normoglycemia or Prediabetes.

作者信息

Park Heyjun, Metwally Ahmed A, Delfarah Alireza, Wu Yue, Perelman Dalia, Rodgar Majid, Mayer Caleb, Celli Alessandra, McLaughlin Tracey, Mignot Emmanuel, Snyder Michael

机构信息

Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A.

Department of International Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, U.S.A.

出版信息

medRxiv. 2024 Sep 6:2024.09.05.24312545. doi: 10.1101/2024.09.05.24312545.

Abstract

This study examined the relationship between lifestyles (diet, sleep, and physical activity) and glucose responses at a personal level. 36 healthy adults in the Bay Area were monitored for their lifestyles and glucose levels using wearables and continuous glucose monitoring (NCT03919877). Gold-standard metabolic tests were conducted to phenotype metabolic characteristics. Through the lifestyle data (2,307 meals, 1,809 nights, and 2,447 days) and 231,206 CGM readings from metabolically-phenotyped individuals with normoglycemia or prediabetes, we found: 1) eating timing was associated with hyperglycemia, muscle insulin resistance (IR), and incretin dysfunction, whereas nutrient intakes were not; 2) timing of increased activity in muscle IS and IR participants was associated with differential benefits of glucose control; 3) Integrated ML models using lifestyle factors predicted distinct metabolic characteristics (muscle, adipose IR or incretin dysfunction). Our data indicate the differential impact of lifestyles on glucose regulation among individuals with different metabolic phenotypes, highlighting the value of personalized lifestyle modifications.

摘要

本研究在个体层面上考察了生活方式(饮食、睡眠和身体活动)与血糖反应之间的关系。使用可穿戴设备和连续血糖监测技术(NCT03919877)对旧金山湾区的36名健康成年人的生活方式和血糖水平进行了监测。进行了金标准代谢测试以对代谢特征进行表型分析。通过生活方式数据(2307餐、1809晚和2447天)以及来自具有正常血糖或糖尿病前期代谢表型个体的231206次连续血糖监测读数,我们发现:1)进食时间与高血糖、肌肉胰岛素抵抗(IR)和肠促胰岛素功能障碍有关,而营养摄入则无关;2)肌肉胰岛素敏感性(IS)和IR参与者活动增加的时间与血糖控制的不同益处有关;3)使用生活方式因素的综合机器学习模型预测了不同的代谢特征(肌肉、脂肪IR或肠促胰岛素功能障碍)。我们的数据表明生活方式对不同代谢表型个体的血糖调节有不同影响,突出了个性化生活方式改变的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4f/11398605/5a8718dcdc4b/nihpp-2024.09.05.24312545v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验