Suppr超能文献

一个用于理解真实世界医疗数据中选择偏倚的框架。

A framework for understanding selection bias in real-world healthcare data.

作者信息

Kundu Ritoban, Shi Xu, Morrison Jean, Barrett Jessica, Mukherjee Bhramar

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, USA.

MRC Investigator, Biostatistics Unit, Medical Research Council, University of Cambridge, Cambridge, UK.

出版信息

J R Stat Soc Ser A Stat Soc. 2024 May 2;187(3):606-635. doi: 10.1093/jrsssa/qnae039. eCollection 2024 Aug.

Abstract

Using administrative patient-care data such as Electronic Health Records (EHR) and medical/pharmaceutical claims for population-based scientific research has become increasingly common. With vast sample sizes leading to very small standard errors, researchers need to pay more attention to potential biases in the estimates of association parameters of interest, specifically to biases that do not diminish with increasing sample size. Of these multiple sources of biases, in this paper, we focus on understanding selection bias. We present an analytic framework using directed acyclic graphs for guiding applied researchers to dissect how different sources of selection bias may affect estimates of the association between a binary outcome and an exposure (continuous or categorical) of interest. We consider four easy-to-implement weighting approaches to reduce selection bias with accompanying variance formulae. We demonstrate through a simulation study when they can rescue us in practice with analysis of real-world data. We compare these methods using a data example where our goal is to estimate the well-known association of cancer and biological sex, using EHR from a longitudinal biorepository at the University of Michigan Healthcare system. We provide annotated R codes to implement these weighted methods with associated inference.

摘要

使用诸如电子健康记录(EHR)和医疗/药品报销记录等管理型患者护理数据进行基于人群的科学研究已变得越来越普遍。由于庞大的样本量会导致非常小的标准误差,研究人员需要更加关注感兴趣的关联参数估计中的潜在偏差,特别是那些不会随着样本量增加而减小的偏差。在这些多种偏差来源中,在本文中,我们专注于理解选择偏差。我们提出了一个使用有向无环图的分析框架,以指导应用研究人员剖析不同的选择偏差来源如何影响二元结局与感兴趣的暴露(连续或分类)之间关联的估计。我们考虑了四种易于实施的加权方法来减少选择偏差,并给出了相应的方差公式。我们通过模拟研究展示了它们在实际中何时能通过对真实世界数据的分析来帮助我们。我们使用一个数据示例比较了这些方法,在该示例中,我们的目标是利用密歇根大学医疗系统纵向生物样本库的电子健康记录来估计癌症与生物性别的著名关联。我们提供了带注释的R代码来实现这些加权方法及相关推断。

相似文献

1
A framework for understanding selection bias in real-world healthcare data.一个用于理解真实世界医疗数据中选择偏倚的框架。
J R Stat Soc Ser A Stat Soc. 2024 May 2;187(3):606-635. doi: 10.1093/jrsssa/qnae039. eCollection 2024 Aug.

本文引用的文献

4
Global biobank meta-analysis.全球生物样本库荟萃分析
Nat Genet. 2022 Dec;54(12):1764. doi: 10.1038/s41588-022-01264-z.
6
Efficacy of COVID-19 vaccines in patients taking immunosuppressants.COVID-19 疫苗在服用免疫抑制剂的患者中的疗效。
Ann Rheum Dis. 2022 Jun;81(6):875-880. doi: 10.1136/annrheumdis-2021-222045. Epub 2022 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验