Am J Epidemiol. 2022 Mar 24;191(4):711-723. doi: 10.1093/aje/kwab299.
Pharmacoepidemiologic studies are increasingly conducted within linked databases, often to obtain richer confounder data. However, the potential for selection bias is frequently overlooked when linked data is available only for a subset of patients. We highlight the importance of accounting for potential selection bias by evaluating the association between antipsychotics and type 2 diabetes in youths within a claims database linked to a smaller laboratory database. We used inverse probability of treatment weights (IPTW) to control for confounding. In analyses restricted to the linked cohorts, we applied inverse probability of selection weights (IPSW) to create a population representative of the full cohort. We used pooled logistic regression weighted by IPTW only or IPTW and IPSW to estimate treatment effects. Metabolic conditions were more prevalent in linked cohorts compared with the full cohort. Within the full cohort, the confounding-adjusted hazard ratio was 2.26 (95% CI: 2.07, 2.49) comparing initiation of antipsychotics with initiation of control medications. Within the linked cohorts, a different magnitude of association was obtained without adjustment for selection, whereas applying IPSW resulted in point estimates similar to the full cohort's (e.g., an adjusted hazard ratio of 1.63 became 2.12). Linked database studies may generate biased estimates without proper adjustment for potential selection bias.
药物流行病学研究越来越多地在关联数据库中进行,通常是为了获得更丰富的混杂因素数据。然而,当关联数据仅可用于患者的一个子集时,通常会忽略潜在的选择偏倚。我们通过在与较小的实验室数据库关联的索赔数据库中评估抗精神病药与青少年 2 型糖尿病之间的关联,强调了通过评估潜在选择偏倚来解释结果的重要性。我们使用治疗反概率权重 (IPT) 来控制混杂因素。在仅限于关联队列的分析中,我们应用选择反概率权重 (ISW) 来创建一个代表整个队列的人群。我们仅使用 IPTW 或 IPTW 和 IPSW 加权的汇总逻辑回归来估计治疗效果。与整个队列相比,在关联队列中代谢疾病更为普遍。在整个队列中,与起始对照药物相比,起始抗精神病药的调整混杂后危害比为 2.26(95%CI:2.07,2.49)。在未调整选择偏倚的情况下,在关联队列中得到了不同程度的关联,而应用 IPSW 则得出了与整个队列相似的点估计值(例如,调整后的危害比从 1.63 变为 2.12)。如果不适当调整潜在选择偏倚,关联数据库研究可能会产生有偏差的估计。