Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.
Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0137624. doi: 10.1128/aem.01376-24. Epub 2024 Sep 16.
Multidrug-resistant strains represent a major concern due to their ability to thrive in diverse environments and cause life-threatening infections. While antimicrobial resistance and virulence mechanisms have been extensively studied, the contribution of bacteriocins to 's adaptability remains poorly explored. , within the Bacillota phylum, is a prominent bacteriocin producer. Here, we developed a tailored database of 76 Bacillota bacteriocins (217 sequences, including 40 novel bacteriocins) and applied it to uncover bacteriocin distribution patterns in 997 quality-filtered and (former clade B) genomes. Curated using computational pipelines and literature mining, our database demonstrates superior precision versus leading public tools in identifying diverse bacteriocins. Distinct bacteriocin profiles emerged between and , highlighting species-specific adaptations. strains from hospitalized patients were significantly enriched in bacteriocins as enterocin A and bacteriocins 43 (or T8), AS5, and AS11. These bacteriocin genes were strongly associated with antibiotic resistance, particularly vancomycin and ampicillin, and Inc18 2_pRE25-derivative plasmids, classically associated with vancomycin resistance transposons. Such bacteriocin arsenal likely enhances the adaptability and competitive fitness of in the nosocomial environment. By combining a novel tailored database, whole-genome sequencing, and epidemiological data, our work elucidates meaningful connections between bacteriocin determinants, antimicrobial resistance, mobile genetic elements, and ecological origins in and provides a framework for elucidating bacteriocin landscapes in other organisms. Characterizing species- and strain-level differences in bacteriocin profiles may reveal determinants of ecological adaptation, and translating these discoveries could further inform strategies to exploit bacteriocins against high-risk clones.
This work significantly expands the knowledge on the understudied bacteriocin diversity in opportunistic enterococci, revealing their contribution in the adaptation to different environments. It underscores the importance of placing increased emphasis on genetic platforms carrying bacteriocins as well as on cryptic plasmids that often exclusively harbor bacteriocins since bacteriocin production can significantly contribute to plasmid maintenance, potentially facilitating their stable transmission across generations. Further characterization of strain-level bacteriocin landscapes could inform strategies to combat high-risk clones. Overall, these insights provide a framework for unraveling the therapeutic and biotechnological potential of bacteriocins.
多药耐药菌株是一个主要关注点,因为它们能够在多种环境中茁壮成长并导致危及生命的感染。尽管抗菌药物耐药性和毒力机制已经得到了广泛研究,但细菌素在“的适应性中的贡献仍未得到充分探索。芽孢杆菌门内的是一种突出的细菌素产生菌。在这里,我们开发了一个定制的芽孢杆菌门细菌素数据库(76 种细菌素(217 个序列,包括 40 种新型细菌素),并应用它来揭示 997 个经过质量过滤的和(前 B 分支)基因组中的细菌素分布模式。我们的数据库是使用计算管道和文献挖掘精心整理的,与领先的公共工具相比,在识别各种细菌素方面具有更高的精度。和之间出现了不同的细菌素图谱,突出了物种特异性的适应。来自住院患者的菌株中,肠球菌 A 和细菌素 43(或 T8)、AS5 和 AS11 的细菌素明显丰富。这些细菌素基因与抗生素耐药性,特别是万古霉素和氨苄西林,以及与万古霉素耐药转座子经典相关的 Inc18 2_pRE25 衍生质粒强烈相关。这种细菌素武器库可能增强了在医院环境中生存和竞争的适应性。通过结合新的定制数据库、全基因组测序和流行病学数据,我们的工作阐明了和中的细菌素决定因素、抗菌药物耐药性、移动遗传元件和生态起源之间的有意义的联系,并为阐明其他生物体中的细菌素景观提供了框架。描述细菌素图谱的种间和菌株间差异可能揭示生态适应的决定因素,并且将这些发现转化为利用细菌素对抗高风险克隆的策略可能会进一步提供信息。