Shinkai Soya, Nakagawa Masaki, Sugawara Takeshi, Togashi Yuichi, Ochiai Hiroshi, Nakato Ryuichiro, Taniguchi Yuichi, Onami Shuichi
Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
NAR Genom Bioinform. 2020 Mar 31;2(2):lqaa020. doi: 10.1093/nargab/lqaa020. eCollection 2020 Jun.
Genomes are spatiotemporally organized within the cell nucleus. Genome-wide chromosome conformation capture (Hi-C) technologies have uncovered the 3D genome organization. Furthermore, live-cell imaging experiments have revealed that genomes are functional in 4D. Although computational modeling methods can convert 2D Hi-C data into population-averaged static 3D genome models, exploring 4D genome nature based on 2D Hi-C data remains lacking. Here, we describe a 4D simulation method, PHi-C (polymer dynamics deciphered from Hi-C data), that depicts 4D genome features from 2D Hi-C data by polymer modeling. PHi-C allows users to interpret 2D Hi-C data as physical interaction parameters within single chromosomes. The physical interaction parameters can then be used in the simulations and analyses to demonstrate dynamic characteristics of genomic loci and chromosomes as observed in live-cell imaging experiments. PHi-C is available at https://github.com/soyashinkai/PHi-C.
基因组在细胞核内进行时空组织。全基因组染色体构象捕获(Hi-C)技术揭示了三维基因组组织。此外,活细胞成像实验表明基因组在四维空间中具有功能。尽管计算建模方法可以将二维Hi-C数据转换为群体平均的静态三维基因组模型,但基于二维Hi-C数据探索四维基因组本质的研究仍然缺乏。在此,我们描述了一种四维模拟方法,即PHi-C(从Hi-C数据解析的聚合物动力学),它通过聚合物建模从二维Hi-C数据中描绘四维基因组特征。PHi-C允许用户将二维Hi-C数据解释为单条染色体内的物理相互作用参数。然后,这些物理相互作用参数可用于模拟和分析,以展示活细胞成像实验中观察到的基因组位点和染色体的动态特征。PHi-C可在https://github.com/soyashinkai/PHi-C获取。