SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
Nat Struct Mol Biol. 2023 Sep;30(9):1275-1285. doi: 10.1038/s41594-023-01059-8. Epub 2023 Aug 3.
In living cells, the 3D structure of gene loci is dynamic, but this is not revealed by 3C and FISH experiments in fixed samples, leaving a notable gap in our understanding. To overcome these limitations, we applied the highly predictive heteromorphic polymer (HiP-HoP) model to determine chromatin fiber mobility at the Pax6 locus in three mouse cell lines with different transcription states. While transcriptional activity minimally affects movement of 40-kbp regions, we observed that motion of smaller 1-kbp regions depends strongly on local disruption to chromatin fiber structure marked by H3K27 acetylation. This also substantially influenced locus configuration dynamics by modulating protein-mediated promoter-enhancer loops. Importantly, these simulations indicate that chromatin dynamics are sufficiently fast to sample all possible locus conformations within minutes, generating wide dynamic variability within single cells. This combination of simulation and experimental validation provides insight into how transcriptional activity influences chromatin structure and gene dynamics.
在活细胞中,基因座的 3D 结构是动态的,但这在固定样本的 3C 和 FISH 实验中无法揭示,这使得我们对其的理解存在明显的空白。为了克服这些限制,我们应用了高度可预测的异质聚合物(HiP-HoP)模型,以确定三种转录状态不同的小鼠细胞系中 Pax6 基因座处染色质纤维的移动性。虽然转录活性对 40-kbp 区域的运动影响很小,但我们观察到较小的 1-kbp 区域的运动强烈依赖于由 H3K27 乙酰化标记的染色质纤维结构的局部破坏。这还通过调节蛋白介导的启动子增强子环强烈影响基因座构型动力学。重要的是,这些模拟表明染色质动力学足够快,可以在数分钟内采样所有可能的基因座构象,在单个细胞内产生广泛的动态可变性。模拟和实验验证的这种结合为我们提供了深入了解转录活性如何影响染色质结构和基因动力学的见解。