Suppr超能文献

敲击动力学作为神经精神障碍精细运动下降的数字生物标志物的诊断准确性:系统评价和荟萃分析。

Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis.

机构信息

Department of Biomedical Engineering, Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates.

Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates.

出版信息

Sci Rep. 2022 May 11;12(1):7690. doi: 10.1038/s41598-022-11865-7.

Abstract

The unmet timely diagnosis requirements, that take place years after substantial neural loss and neuroperturbations in neuropsychiatric disorders, affirm the dire need for biomarkers with proven efficacy. In Parkinson's disease (PD), Mild Cognitive impairment (MCI), Alzheimers disease (AD) and psychiatric disorders, it is difficult to detect early symptoms given their mild nature. We hypothesize that employing fine motor patterns, derived from natural interactions with keyboards, also knwon as keystroke dynamics, could translate classic finger dexterity tests from clinics to populations in-the-wild for timely diagnosis, yet, further evidence is required to prove this efficiency. We have searched PubMED, Medline, IEEEXplore, EBSCO and Web of Science for eligible diagnostic accuracy studies employing keystroke dynamics as an index test for the detection of neuropsychiatric disorders as the main target condition. We evaluated the diagnostic performance of keystroke dynamics across 41 studies published between 2014 and March 2022, comprising 3791 PD patients, 254 MCI patients, and 374 psychiatric disease patients. Of these, 25 studies were included in univariate random-effect meta-analysis models for diagnostic performance assessment. Pooled sensitivity and specificity are 0.86 (95% Confidence Interval (CI) 0.82-0.90, I = 79.49%) and 0.83 (CI 0.79-0.87, I = 83.45%) for PD, 0.83 (95% CI 0.65-1.00, I = 79.10%) and 0.87 (95% CI 0.80-0.93, I = 0%) for psychomotor impairment, and 0.85 (95% CI 0.74-0.96, I = 50.39%) and 0.82 (95% CI 0.70-0.94, I = 87.73%) for MCI and early AD, respectively. Our subgroup analyses conveyed the diagnosis efficiency of keystroke dynamics for naturalistic self-reported data, and the promising performance of multimodal analysis of naturalistic behavioral data and deep learning methods in detecting disease-induced phenotypes. The meta-regression models showed the increase in diagnostic accuracy and fine motor impairment severity index with age and disease duration for PD and MCI. The risk of bias, based on the QUADAS-2 tool, is deemed low to moderate and overall, we rated the quality of evidence to be moderate. We conveyed the feasibility of keystroke dynamics as digital biomarkers for fine motor decline in naturalistic environments. Future work to evaluate their performance for longitudinal disease monitoring and therapeutic implications is yet to be performed. We eventually propose a partnership strategy based on a "co-creation" approach that stems from mechanistic explanations of patients' characteristics derived from data obtained in-clinics and under ecologically valid settings. The protocol of this systematic review and meta-analysis is registered in PROSPERO; identifier CRD42021278707. The presented work is supported by the KU-KAIST joint research center.

摘要

未满足的及时诊断需求,发生在神经精神障碍发生大量神经损失和神经扰乱数年之后,这证实了对具有经过验证疗效的生物标志物的迫切需求。在帕金森病 (PD)、轻度认知障碍 (MCI)、阿尔茨海默病 (AD) 和精神障碍中,由于其性质轻微,很难发现早期症状。我们假设利用源自与键盘自然交互的精细运动模式,也称为按键动力学,可以将经典的手指灵巧度测试从临床转化为人群中的实时诊断,但需要进一步的证据来证明这种效率。我们已经在 PubMED、Medline、IEEEXplore、EBSCO 和 Web of Science 上搜索了合格的诊断准确性研究,这些研究将按键动力学作为索引测试用于检测神经精神障碍作为主要目标条件。我们评估了按键动力学在 41 项发表于 2014 年至 2022 年 3 月期间的研究中的诊断性能,这些研究包括 3791 名 PD 患者、254 名 MCI 患者和 374 名精神疾病患者。其中,25 项研究被纳入用于诊断性能评估的单变量随机效应荟萃分析模型。汇总的敏感性和特异性分别为 0.86 (95%置信区间 [CI] 0.82-0.90,I=79.49%)和 0.83 (CI 0.79-0.87,I=83.45%),用于 PD,0.83 (95% CI 0.65-1.00,I=79.10%)和 0.87 (95% CI 0.80-0.93,I=0%)用于精神运动障碍,0.85 (95% CI 0.74-0.96,I=50.39%)和 0.82 (95% CI 0.70-0.94,I=87.73%)用于 MCI 和早期 AD。我们的亚组分析传达了按键动力学在自然报告数据中的诊断效率,以及自然行为数据的多模态分析和深度学习方法在检测疾病诱导表型方面的有前途的性能。基于 QUADAS-2 工具的荟萃回归模型显示,PD 和 MCI 的诊断准确性和精细运动损伤严重程度指数随年龄和疾病持续时间的增加而增加。基于 QUADAS-2 工具的偏倚风险被认为是低到中度,总体而言,我们将证据质量评为中等。我们传达了按键动力学作为自然环境中精细运动下降的数字生物标志物的可行性。未来还需要评估它们在疾病纵向监测和治疗意义方面的性能。我们最终提出了一种基于“共同创造”方法的伙伴关系策略,该方法源于从临床和生态有效环境中获得的数据中患者特征的机制解释。本系统评价和荟萃分析的方案已在 PROSPERO 中注册;标识符 CRD42021278707。本研究得到了 KU-KAIST 联合研究中心的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef0/9095860/9b57ef8cf94a/41598_2022_11865_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验