Suppr超能文献

虚拟现实中多指拇指运动想象的神经特征:脑电图分析

Neural signatures of motor imagery for a supernumerary thumb in VR: an EEG analysis.

作者信息

Alsuradi Haneen, Hong Joseph, Sarmadi Alireza, Volcic Robert, Salam Hanan, Atashzar S Farokh, Khorrami Farshad, Eid Mohamad

机构信息

Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE.

Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE.

出版信息

Sci Rep. 2024 Sep 16;14(1):21558. doi: 10.1038/s41598-024-72358-3.

Abstract

Human movement augmentation is a rising field of research. A promising control strategy for augmented effectors involves utilizing electroencephalography through motor imagery (MI) functions. However, performing MI of a supernumerary effector is challenging, to which MI training is one potential solution. In this study, we investigate the validity of a virtual reality (VR) environment as a medium for eliciting MI neural activations for a supernumerary thumb. Specifically, we assess whether it is possible to induce a distinct neural signature for MI of a supernumerary thumb in VR. Twenty participants underwent a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements. Spectral power and event related desynchronization (ERD) analyses at the group level showed that the MI signature associated with the supernumerary thumb was indeed distinct, significantly different from both the baseline and the MI signature associated with the natural thumb, while single-trial classification showed that it is distinguishable with a 78% and 69% classification accuracy, respectively. Furthermore, spectral power and ERD analyses at the group level showed that the MI signatures associated with directional movement of the supernumerary thumb, flexion and extension, were also significantly different, and single-trial classification demonstrated that these movements could be distinguished with 60% accuracy. Fine-tuning the models further increased the respective classification accuracies, indicating the potential presence of personalized features across subjects.

摘要

人体运动增强是一个正在兴起的研究领域。一种用于增强效应器的有前景的控制策略涉及通过运动想象(MI)功能利用脑电图。然而,对额外效应器进行运动想象具有挑战性,运动想象训练是一种潜在的解决方案。在本研究中,我们调查虚拟现实(VR)环境作为一种媒介来引发额外拇指的运动想象神经激活的有效性。具体而言,我们评估在VR中是否有可能为额外拇指的运动想象诱导出独特的神经特征。20名参与者进行了一项双重实验,他们先观察自然拇指和额外拇指的运动,然后对观察到的运动进行运动想象。在组水平上的频谱功率和事件相关去同步化(ERD)分析表明,与额外拇指相关的运动想象特征确实是独特的,与基线以及与自然拇指相关的运动想象特征均有显著差异,而单次试验分类表明其可分别以78%和69%的分类准确率被区分出来。此外,在组水平上的频谱功率和ERD分析表明,与额外拇指的方向运动(屈曲和伸展)相关的运动想象特征也有显著差异,单次试验分类表明这些运动可以以60%的准确率被区分出来。对模型进行微调进一步提高了各自的分类准确率,表明不同受试者之间可能存在个性化特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdc2/11405704/913594958039/41598_2024_72358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验