Suppr超能文献

ESCHR:一种针对不同数据集的稳健聚类的超参数随机集成方法。

ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets.

机构信息

Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, 22902, USA.

Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22902, USA.

出版信息

Genome Biol. 2024 Sep 16;25(1):242. doi: 10.1186/s13059-024-03386-5.

Abstract

Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.

摘要

聚类广泛应用于单细胞分析,但目前的方法在准确性、鲁棒性、易用性和可解释性方面存在局限性。为了解决这些局限性,我们开发了一种集成聚类方法,在无需调整超参数的情况下,在硬聚类方面优于其他方法。它还执行软聚类以描绘连续区域,并量化聚类不确定性,这里通过绘制 MNIST 手写数字之间以及下丘脑成神经细胞亚群之间的连接和中间过渡来展示。这种超参数随机集成方法提高了单细胞聚类的准确性、鲁棒性、易用性和可解释性,并且在其他领域也可能证明是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e284/11406744/250acdf270d5/13059_2024_3386_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验