Sharma Shubham, Pandey Manish, Nagamatsu Shuichi, Tanaka Hirofumi, Takashima Kazuto, Nakamura Masakazu, Pandey Shyam S
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
Department of Electronics and Communication Engineering, Indian Institute of Technology, Durg,Bhilai, Chattisgarh 491001, India.
ACS Appl Mater Interfaces. 2024 May 1;16(17):22282-22293. doi: 10.1021/acsami.4c03111. Epub 2024 Apr 21.
Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlO-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlO-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>10), remarkable memory retention (>10 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >10 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.
非易失性有机忆阻器已成为下一代电子产品的有前途的候选者,这凸显了采用垂直器件制造以实现高密度的必要性。在此,我们对高性能有机忆阻器进行了全面研究,这些忆阻器采用交叉指结构制造,在铝电极之间嵌入了PTB7/Al-AlO纳米簇/PTB7。PTB7薄膜采用单向浮膜转移法制造,能够在逐层(LbL)配置中独立均匀地制造薄膜,而不会干扰下层薄膜。我们使用哈伯德模型研究了忆阻器的电荷传输机制,突出了Al-AlO纳米簇在开启器件方面的作用,这是由于双极化子在半导体层中的积累。通过改变器件结构中LbL薄膜的数量,电阻状态的电阻被系统地改变,从而能够制造新型多级忆阻器。这些多级器件表现出优异的性能指标,包括增强的存储密度、高开关比(>10)、显著的存储保持能力(>10秒)、高耐久性(87个开关周期)和快速切换(~100纳秒)。此外,还制造了柔性忆阻器,即使在弯曲条件下也能表现出一致的性能,在半径为2.78毫米的情况下可进行>10次弯曲循环。这项研究不仅展示了对有机忆阻器中电荷传输的基本理解,还引入了对高密度柔性应用具有重要意义的新型器件架构。