Allen Institute, Seattle, WA, USA.
Allen Institute for Neural Dynamics, Seattle, WA, USA.
Cell Rep. 2024 Sep 24;43(9):114763. doi: 10.1016/j.celrep.2024.114763. Epub 2024 Sep 16.
Recent studies have found dramatic cell-type-specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at this granularity to understand brain function. Although initial work characterized activity by cell type, the alterations in cortical circuitry due to interacting novelty effects remain unclear. We investigated circuit mechanisms underlying the observed neural dynamics in response to novel stimuli using a large-scale public dataset of electrophysiological recordings in behaving mice and a population network model. The model was constrained by multi-patch synaptic physiology and electron microscopy data. We found generally weaker connections under novel stimuli, with shifts in the balance between somatostatin (SST) and vasoactive intestinal polypeptide (VIP) populations and increased excitatory influences on parvalbumin (PV) and SST populations. These findings systematically characterize how cortical circuits adapt to stimulus novelty.
最近的研究发现,刺激新颖性会引起明显的细胞类型特异性反应,这凸显了在这种粒度下分析皮质电路以理解大脑功能的重要性。尽管最初的工作按细胞类型来描述活动,但由于相互作用的新颖性效应而导致的皮质电路变化仍不清楚。我们使用行为小鼠的大规模电生理记录公共数据集和一个群体网络模型,研究了观察到的对新刺激的神经动力学的潜在的电路机制。该模型受到多贴片突触生理学和电子显微镜数据的约束。我们发现,新刺激下的连接通常较弱,生长抑素(SST)和血管活性肠肽(VIP)群体之间的平衡发生转移,对钙调蛋白(PV)和 SST 群体的兴奋性影响增加。这些发现系统地描述了皮质电路如何适应刺激新颖性。