Suppr超能文献

用于在大型开放基准上评估转移性脑癌的纵向深度神经网络。

Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark.

机构信息

Department of Neurosurgery, NYU Langone Health, New York, NY, USA.

NVIDIA, Santa Clara, CA, USA.

出版信息

Nat Commun. 2024 Sep 17;15(1):8170. doi: 10.1038/s41467-024-52414-2.

Abstract

The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.

摘要

在患者的一生中检测和跟踪转移性癌症仍然是临床试验和实际护理中的主要挑战。深度学习的进步结合大量数据集可能使能够开发解决这一挑战的工具。我们展示了 NYUMets-Brain,这是世界上最大的、纵向的、包含 1429 名患者的成像、临床随访和医疗管理的癌症真实世界数据集。使用这个数据集,我们开发了 Segmentation-Through-Time,这是一个深度神经网络,它明确利用了数据的纵向结构,并在小(<10 毫米)转移检测和分割方面取得了最先进的结果。我们还表明,随着时间的推移,脑转移的每月变化率与总生存率密切相关(HR 1.27,95%CI 1.18-1.38)。我们正在发布数据集、代码库和模型权重,供其他癌症研究人员在此基础上进行研究,并作为公共基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7d/11408643/fc7ca12b504f/41467_2024_52414_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验