Suppr超能文献

基于TiCT MXene纳米带和二茂铁/金的p53蛋白灵敏夹心型电化学免疫传感

Sensitive sandwich-type electrochemical immunosensing of p53 protein based on TiCT MXene nanoribbons and ferrocene/gold.

作者信息

Lin Song, Wen Lixin, Zhao Hong, Huang Donghua, Yang Zuwei, Zou Qinge, Jiang Ling

机构信息

Sanming Integrated Medicine Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Sanming, 365000, PR China.

出版信息

Heliyon. 2024 Aug 24;10(17):e36910. doi: 10.1016/j.heliyon.2024.e36910. eCollection 2024 Sep 15.

Abstract

Since the p53 protein is an important promising biomarker of lung tumor and colorectal tumor, it is very essential to design a highly effective mean to monitor the degree of p53 for the early clinical analysis/therapy of the related tumors. In this work, a sandwich-type electrochemical immunosensing (SES) platform is proposed for the first time to detect p53 via synthesizing TiCT MXene nanoribbons (TiCT Nb) and ferrocene/gold nanoparticles (Fc/Au) respectively as the sensing substrate and signal-amplifier. The superior electrical property and large surface area of TiCT Nb are beneficial to assemble the initial p53-antibodies (Ab), while the synthesized Fc/Au is devoted to assemble the secondary p53 antibodies (Ab) and gives a magnified signal. By adopting the Fc molecules as the probes, the experiments reveal the response current of Fc resulted from the SES structure increases along with the p53 increase from 1.0 to 200.0 pg mL. A considerable low detection limit (1.0 pg mL) is achieved after optimizing several key conditions, it is thus confirmed the as-proposed SES mean exhibits significant application in the detection of p53 protein and other targets.

摘要

由于p53蛋白是肺癌和结直肠癌重要且有前景的生物标志物,因此设计一种高效方法来监测p53水平,用于相关肿瘤的早期临床分析/治疗至关重要。在这项工作中,首次提出了一种夹心型电化学免疫传感(SES)平台,通过分别合成TiCT MXene纳米带(TiCT Nb)和二茂铁/金纳米颗粒(Fc/Au)作为传感基底和信号放大器来检测p53。TiCT Nb优异的电学性能和大表面积有利于组装初始p53抗体(Ab),而合成的Fc/Au则用于组装二级p53抗体(Ab)并给出放大信号。通过采用Fc分子作为探针,实验表明,SES结构产生的Fc响应电流随着p53从1.0增加到200.0 pg mL而增加。在优化了几个关键条件后,实现了相当低的检测限(1.0 pg mL),因此证实所提出的SES方法在检测p53蛋白和其他目标方面具有显著应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f548/11407078/ccbea0eacc55/sc1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验