文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多目标城市数据集:用于检测行人、交通和摩托车的资源。

Multi-object urban dataset: A resource for detecting pedestrians, traffic and motorbikes.

作者信息

Patil Kailas, Gatagat Darshana, Rumane Omkar, Pashankar Siddharth, Chumchu Prawit

机构信息

Vishwakarma University, Pune, India.

Kasetsart University, Sriracha, Thailand.

出版信息

Data Brief. 2024 Aug 29;57:110887. doi: 10.1016/j.dib.2024.110887. eCollection 2024 Dec.


DOI:10.1016/j.dib.2024.110887
PMID:39290432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11405908/
Abstract

This article describes a dataset comprising 16,426 real-world urban photographs, capturing vehicles, cyclists, motorbikes, and pedestrians across Morning, Evening, and Night scenes. The dataset is valuable for machine learning tasks in traffic analysis, urban planning, and public safety. It enables the development and validation of algorithms for pedestrian detection, traffic flow analysis, and infrastructure optimization. Our main goal is to assist academics, urban planners, and decision-makers in creating sophisticated models for pedestrian safety, traffic control, and accident avoidance. This dataset is a useful resource for training and verifying algorithms targeted at boosting real-time traffic monitoring systems, optimizing urban infrastructure, and overall road safety because of its high variability and significant volume. This dataset represents a major advancement for smart city projects and the creation of intelligent transportation systems.

摘要

本文介绍了一个数据集,它包含16426张真实世界的城市照片,捕捉了早晨、傍晚和夜间场景中的车辆、骑自行车的人、摩托车和行人。该数据集对于交通分析、城市规划和公共安全中的机器学习任务具有重要价值。它有助于开发和验证行人检测、交通流分析和基础设施优化算法。我们的主要目标是协助学者、城市规划者和决策者创建用于行人安全、交通控制和事故预防的复杂模型。由于其高度的多样性和庞大的数量,该数据集是训练和验证旨在增强实时交通监测系统、优化城市基础设施以及整体道路安全的算法的有用资源。这个数据集代表了智慧城市项目和智能交通系统创建的一项重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/bece16582216/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/13fd193b55fc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/b7b1993b9beb/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/a8bb0e01e14c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/877273837158/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/f52b1f93a35e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/d96b5ccb52e8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/a53f7001ddac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/997f4bb0106d/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/bece16582216/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/13fd193b55fc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/b7b1993b9beb/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/a8bb0e01e14c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/877273837158/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/f52b1f93a35e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/d96b5ccb52e8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/a53f7001ddac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/997f4bb0106d/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9113/11405908/bece16582216/gr9.jpg

相似文献

[1]
Multi-object urban dataset: A resource for detecting pedestrians, traffic and motorbikes.

Data Brief. 2024-8-29

[2]
Traveling by Bus Instead of Car on Urban Major Roads: Safety Benefits for Vehicle Occupants, Pedestrians, and Cyclists.

J Urban Health. 2018-4

[3]
Pattern of pedestrian injuries in the city of Nairobi: implications for urban safety planning.

J Urban Health. 2013-10

[4]
SafetyCube: Framework for potential pedestrian risk analysis using multi-dimensional OLAP.

Accid Anal Prev. 2021-6

[5]
Unveiling the relevance of traffic enforcement cameras on the severity of vehicle-pedestrian collisions in an urban environment with machine learning models.

J Safety Res. 2022-6

[6]
Severity of road crashes involving pedestrians in Metro Manila, Philippines.

Accid Anal Prev. 2016-6-21

[7]
Understanding complex traffic road scenes: The case of child-pedestrians' hazard perception.

J Safety Res. 2020-1-2

[8]
Left-turning vehicle-pedestrian conflicts at signalized intersections with traffic lights: Benefit or harm? A two-stage study.

Chin J Traumatol. 2019-4

[9]
Cyber-Physical System for Smart Traffic Light Control.

Sensors (Basel). 2023-5-24

[10]
Investigating the influence of streetscape environmental characteristics on pedestrian crashes at intersections using street view images and explainable machine learning.

Accid Anal Prev. 2024-9

本文引用的文献

[1]
Sugarcane leaf dataset: A dataset for disease detection and classification for machine learning applications.

Data Brief. 2024-2-29

[2]
Mint leaves: Dried, fresh, and spoiled dataset for condition analysis and machine learning applications.

Data Brief. 2023-10-24

[3]
Coconut () tree disease dataset: A dataset for disease detection and classification for machine learning applications.

Data Brief. 2023-10-15

[4]
A comprehensive dataset of damaged banknotes in Indian currency (Rupees) for analysis and classification.

Data Brief. 2023-10-18

[5]
Yoga dataset: A resource for computer vision-based analysis of Yoga asanas.

Data Brief. 2023-5-23

[6]
VegNet: Dataset of vegetable quality images for machine learning applications.

Data Brief. 2022-10-4

[7]
Novelty helmet use and motorcycle rider fatality.

Accid Anal Prev. 2017-6

[8]
Motorcyclist fatality rates and mandatory helmet-use laws.

Accid Anal Prev. 2008-1

[9]
Helmets for preventing head and facial injuries in bicyclists.

Cochrane Database Syst Rev. 2000

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索