Meitav Nizan, Brosh Inbar, Freifeld Limor, Shoham Shy
Technion - Israel Institute of Technology, Department of Biomedical Engineering, Kiryat HaTechnion, Haifa, Israel.
NYU Grossman School of Medicine, Tech4Health Institute and Departments of Neuroscience and Ophthalmology, New York, New York, United States.
Neurophotonics. 2024 Sep;11(Suppl 1):S11515. doi: 10.1117/1.NPh.11.S1.S11515. Epub 2024 Sep 17.
Rapid acquisition of large imaging volumes with microscopic resolution is an essential unmet need in biological research, especially for monitoring rapid dynamical processes such as fast activity in distributed neural systems.
We present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures.
Our multifocal microscopy approach leverages diffraction to image multiple focal depths simultaneously. It is based on a custom-designed diffractive optical element suited to low magnification and large FOV applications and customized prisms for chromatic correction, allowing for wide bandwidth fluorescence imaging. We integrate this system within a conventional microscope and demonstrate that our design can be used flexibly with a variety of magnification/numerical aperture (NA) objectives.
We first experimentally and numerically validate this system for large FOV microscope imaging (three orders-of-magnitude larger volumes than previously shown) at resolutions compatible with cellular imaging. We then demonstrate the utility of this approach by visualizing high resolution three-dimensional (3D) distributed neural network at volume rates up to 100 Hz. These demonstrations use genetically encoded indicators to measure functional neural imaging both and Finally, we explore its potential in other important applications, including blood flow visualization and real-time, microscopic, volumetric rendering.
Our study demonstrates the advantage of diffraction-based multifocal imaging techniques for 3D imaging of mm-scale objects from a single-camera exposure, with important applications in functional neural imaging and other areas benefiting from volumetric imaging.
以微观分辨率快速获取大量成像数据是生物学研究中一项尚未满足的基本需求,特别是对于监测快速动态过程,如分布式神经系统中的快速活动。
我们提出一种多焦点策略,用于在相对较大且可扩展的视场(FOV)上进行快速、体积性、衍射极限分辨率成像,采用单相机曝光。
我们的多焦点显微镜方法利用衍射同时对多个焦深进行成像。它基于一个定制设计的衍射光学元件,适用于低倍率和大视场应用,以及用于色差校正的定制棱镜,可实现宽带荧光成像。我们将该系统集成到传统显微镜中,并证明我们的设计可以与各种放大倍率/数值孔径(NA)的物镜灵活配合使用。
我们首先通过实验和数值模拟验证了该系统在与细胞成像兼容的分辨率下用于大视场显微镜成像的性能(成像体积比之前展示的大三个数量级)。然后,我们通过以高达100 Hz的体积速率可视化高分辨率三维(3D)分布式神经网络,展示了这种方法的实用性。这些演示使用基因编码指示剂来测量功能性神经成像。最后,我们探索了其在其他重要应用中的潜力,包括血流可视化和实时微观体积渲染。
我们的研究证明了基于衍射的多焦点成像技术在通过单相机曝光对毫米级物体进行三维成像方面的优势,在功能性神经成像和其他受益于体积成像的领域具有重要应用。