Sonraí Analytics, Whitla Medical Building, 97 Lisburn Rd, Belfast, BT9 7BL, UK.
Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Health Science Building; 97 Lisburn Road, Belfast, BT9 7BL, UK.
Oncogene. 2023 Nov;42(48):3545-3555. doi: 10.1038/s41388-023-02857-6. Epub 2023 Oct 24.
Digital pathology (DP), or the digitization of pathology images, has transformed oncology research and cancer diagnostics. The application of artificial intelligence (AI) and other forms of machine learning (ML) to these images allows for better interpretation of morphology, improved quantitation of biomarkers, introduction of novel concepts to discovery and diagnostics (such as spatial distribution of cellular elements), and the promise of a new paradigm of cancer biomarkers. The application of AI to tissue analysis can take several conceptual approaches, within the domains of language modelling and image analysis, such as Deep Learning Convolutional Neural Networks, Multiple Instance Learning approaches, or the modelling of risk scores and their application to ML. The use of different approaches solves different problems within pathology workflows, including assistive applications for the detection and grading of tumours, quantification of biomarkers, and the delivery of established and new image-based biomarkers for treatment prediction and prognostic purposes. All these AI formats, applied to digital tissue images, are also beginning to transform our approach to clinical trials. In parallel, the novelty of DP/AI devices and the related computational science pipeline introduces new requirements for manufacturers to build into their design, development, regulatory and post-market processes, which may need to be taken into account when using AI applied to tissues in cancer discovery. Finally, DP/AI represents challenge to the way we accredit new diagnostic tools with clinical applicability, the understanding of which will allow cancer patients to have access to a new generation of complex biomarkers.
数字病理学(DP),或病理学图像的数字化,已经改变了肿瘤学研究和癌症诊断。将人工智能(AI)和其他形式的机器学习(ML)应用于这些图像,可以更好地解释形态学,更准确地定量生物标志物,引入新的概念来发现和诊断(例如细胞成分的空间分布),并有望开创癌症生物标志物的新范例。AI 在组织分析中的应用可以采用几种概念方法,包括语言模型和图像分析领域中的深度学习卷积神经网络、多实例学习方法,或风险评分的建模及其在 ML 中的应用。不同方法的应用可以解决病理学工作流程中的不同问题,包括辅助肿瘤检测和分级、生物标志物定量,以及提供新的和已建立的基于图像的生物标志物,用于治疗预测和预后目的。所有这些应用于数字组织图像的 AI 格式,也开始改变我们对临床试验的方法。与此同时,DP/AI 设备的新颖性以及相关的计算科学管道为制造商在其设计、开发、监管和上市后流程中引入了新的要求,在将 AI 应用于癌症发现中的组织时,可能需要考虑这些要求。最后,DP/AI 代表了我们对具有临床适用性的新诊断工具进行认证的方式的挑战,对其的理解将使癌症患者能够获得新一代复杂的生物标志物。