Suppr超能文献

简化表型分类和突出特征候选物:一种非靶向离子淌度质谱-质谱(IMS-MS)数据的筛选方法。

Streamlining Phenotype Classification and Highlighting Feature Candidates: A Screening Method for Non-Targeted Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Data.

机构信息

Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States.

Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States.

出版信息

Anal Chem. 2024 Oct 8;96(40):15970-15979. doi: 10.1021/acs.analchem.4c03256. Epub 2024 Sep 18.

Abstract

Nontargeted analysis (NTA) is increasingly utilized for its ability to identify key molecular features beyond known targets in complex samples. NTA is particularly advantageous in exploratory studies aimed at identifying phenotype-associated features or molecules able to classify various sample types. However, implementing NTA involves extensive data analyses and labor-intensive annotations. To address these limitations, we developed a rapid data screening capability compatible with NTA data collected on a liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) platform that allows for sample classification while highlighting potential features of interest. Specifically, this method aggregates the thousands of IMS-MS spectra collected across the LC space for each sample and collapses the LC dimension, resulting in a single summed IMS-MS spectrum for screening. The summed IMS-MS spectra are then analyzed with a bootstrapped Lasso technique to identify key regions or coordinates for phenotype classification via support vector machines. Molecular annotations are then performed by examining the features present in the selected coordinates, highlighting potential molecular candidates. To demonstrate this summed IMS-MS screening approach, we applied it to clinical plasma lipidomic NTA data and exposomic NTA data from water sites with varying contaminant levels. Distinguishing coordinates were observed in both studies, enabling the evaluation of phenotypic molecular annotations and resulting in screening models capable of classifying samples with up to a 25% increase in accuracy compared to models using annotated data.

摘要

非靶向分析(NTA)越来越多地被用于识别复杂样品中已知靶点以外的关键分子特征。NTA 在旨在识别与表型相关的特征或能够对各种样本类型进行分类的分子的探索性研究中特别有优势。然而,实施 NTA 涉及广泛的数据分析和劳动密集型注释。为了解决这些限制,我们开发了一种快速数据筛选功能,与在液相色谱、离子淌度质谱和质谱 (LC-IMS-MS) 平台上收集的 NTA 数据兼容,允许在突出潜在感兴趣特征的同时对样品进行分类。具体来说,该方法聚合了每个样品在 LC 空间中收集的数千个 IMS-MS 光谱,并压缩 LC 维度,从而为筛选生成单个总和 IMS-MS 光谱。然后,使用自举套索技术对总和 IMS-MS 光谱进行分析,通过支持向量机识别用于表型分类的关键区域或坐标。然后通过检查所选坐标中存在的特征来执行分子注释,突出潜在的分子候选物。为了展示这种总和 IMS-MS 筛选方法,我们将其应用于临床血浆脂质组学 NTA 数据和具有不同污染物水平的水点的暴露组学 NTA 数据。在这两项研究中都观察到了有区别的坐标,从而能够评估表型分子注释,并产生能够将样本分类的筛选模型,与使用注释数据的模型相比,准确性提高了 25%。

相似文献

2
Liquid chromatography-ion mobility spectrometry-mass spectrometry analysis of multiple classes of steroid hormone isomers in a mixture.
J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Jan 15;1137:121941. doi: 10.1016/j.jchromb.2019.121941. Epub 2019 Dec 16.
3
LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.
Bioinformatics. 2013 Nov 1;29(21):2804-5. doi: 10.1093/bioinformatics/btt465. Epub 2013 Sep 5.
8
The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics?
J Proteome Res. 2024 Jun 7;23(6):1871-1882. doi: 10.1021/acs.jproteome.4c00248. Epub 2024 May 7.
9
"Evaluation of ion mobility spectrometry for the detection of mitragynine in kratom products".
J Pharm Biomed Anal. 2017 Feb 5;134:282-286. doi: 10.1016/j.jpba.2016.11.055. Epub 2016 Dec 2.
10
Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning.
Environ Sci Technol. 2022 Jun 21;56(12):9133-9143. doi: 10.1021/acs.est.2c00201. Epub 2022 Jun 2.

本文引用的文献

2
Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS).
Chemosphere. 2024 Apr;354:141654. doi: 10.1016/j.chemosphere.2024.141654. Epub 2024 Mar 8.
3
Recent Advances in the Detection of Food Toxins Using Mass Spectrometry.
Chem Res Toxicol. 2023 Dec 18;36(12):1834-1863. doi: 10.1021/acs.chemrestox.3c00241. Epub 2023 Dec 7.
4
Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses.
Sci Adv. 2023 Oct 27;9(43):eadj7048. doi: 10.1126/sciadv.adj7048. Epub 2023 Oct 25.
5
From big data to big insights: statistical and bioinformatic approaches for exploring the lipidome.
Anal Bioanal Chem. 2024 Apr;416(9):2189-2202. doi: 10.1007/s00216-023-04991-2. Epub 2023 Oct 25.
6
Aggregated Molecular Phenotype Scores: Enhancing Assessment and Visualization of Mass Spectrometry Imaging Data for Tissue-Based Diagnostics.
Anal Chem. 2023 Aug 29;95(34):12913-12922. doi: 10.1021/acs.analchem.3c02389. Epub 2023 Aug 14.
7
Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome.
J Expo Sci Environ Epidemiol. 2023 Jul;33(4):524-536. doi: 10.1038/s41370-023-00574-6. Epub 2023 Jun 28.
8
Analytical Toolbox to Unlock the Diversity of Oxidized Lipids.
Acc Chem Res. 2023 Apr 4;56(7):835-845. doi: 10.1021/acs.accounts.2c00842. Epub 2023 Mar 21.
9
Integrative analysis of multimodal mass spectrometry data in MZmine 3.
Nat Biotechnol. 2023 Apr;41(4):447-449. doi: 10.1038/s41587-023-01690-2.
10
Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine.
Front Med Technol. 2023 Jan 4;4:1065506. doi: 10.3389/fmedt.2022.1065506. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验