Suppr超能文献

中国农地流转的时空演变及其驱动因素。

Spatiotemporal evolution and driving factors of agricultural land transfer in China.

机构信息

Business School, Shaoxing University, Shaoxing, Zhejiang, China.

Centre for Gaming and Tourism Studies, Macao Polytechnic University, Taipa, Macao, China.

出版信息

PLoS One. 2024 Sep 18;19(9):e0310532. doi: 10.1371/journal.pone.0310532. eCollection 2024.

Abstract

This paper systematically analyzes the spatiotemporal evolution trends and macroeconomic driving factors of farmland transfer at the provincial level in China since 2005, aiming to offer a new perspective for understanding the dynamic mechanisms of China's farmland transfer. Through the integrated use of kernel density estimation, the Markov model, and panel quantile regression methods, this study finds the following: (1) Farmland transfer rates across Chinese provinces show an overall upward trend, but regional differences exhibit a "U-shaped" evolution characterized by initially narrowing and then widening; (2) although provinces have relatively stable farmland transfer levels, there is potential for dynamic transitions; (3) factors such as per capita arable land, farmers' disposable income, the social security level, the urban‒rural income gap, the urbanization rate, government intervention, and the marketization level significantly promote farmland transfer, while inclusive finance inhibits transfer, and agricultural mechanization level and population aging have heterogeneous impacts. Therefore, to achieve convergence of low farmland transfer regions to medium levels while promoting medium-level regions to higher levels, it is recommended that the government increase support for agricultural mechanization, increase farmers' income and social security levels, and optimize marketization processes and government intervention strategies. The main contributions of this paper are (1) systematically revealing the spatiotemporal evolution patterns of China's farmland transfer and (2) employing panel quantile regression methods to explore the heterogeneous impacts of driving factors, providing more precise and detailed empirical support for the government's formulation of farmland transfer policies.

摘要

本文系统分析了 2005 年以来中国省级层面农地流转的时空演变趋势和宏观经济驱动因素,旨在为理解中国农地流转的动态机制提供新视角。本文综合运用核密度估计、马尔可夫模型和面板分位数回归方法,得出以下结论:(1)中国各省的农地流转率整体呈上升趋势,但区域差异呈“U 型”演变,先收窄后扩大;(2)尽管各省的农地流转水平相对稳定,但存在动态转换的潜力;(3)人均耕地、农民可支配收入、社会保障水平、城乡收入差距、城市化率、政府干预和市场水平等因素显著促进了农地流转,而包容性金融抑制了流转,农业机械化水平和人口老龄化则产生了异质性影响。因此,为了实现低流转地区向中流转水平收敛,促进中流转地区向更高水平发展,建议政府加大对农业机械化的支持力度,提高农民收入和社会保障水平,优化市场化进程和政府干预策略。本文的主要贡献在于(1)系统揭示了中国农地流转的时空演变模式,(2)运用面板分位数回归方法探讨了驱动因素的异质性影响,为政府制定农地流转政策提供了更精确、更详细的经验支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8961/11410203/af303d4df98b/pone.0310532.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验