Suppr超能文献

面向 NAS 的可配置且非分层搜索空间。

Towards a configurable and non-hierarchical search space for NAS.

机构信息

ST Microelectronics, 12 Rue Jules Horowitz, Grenoble, 38019, France.

CEA-LETI, Université Grenoble Alpes, F-38000, 17 Avenue des Martyrs, Grenoble, 38054, France.

出版信息

Neural Netw. 2024 Dec;180:106700. doi: 10.1016/j.neunet.2024.106700. Epub 2024 Sep 3.

Abstract

Neural Architecture Search (NAS) outperforms handcrafted Neural Network (NN) design. However, current NAS methods generally use hard-coded search spaces, and predefined hierarchical architectures. As a consequence, adapting them to a new problem can be cumbersome, and it is hard to know which of the NAS algorithm or the predefined hierarchical structure impacts performance the most. To improve flexibility, and be less reliant on expert knowledge, this paper proposes a NAS methodology in which the search space is easily customizable, and allows for full network search. NAS is performed with Gaussian Process (GP)-based Bayesian Optimization (BO) in a continuous architecture embedding space. This embedding is built upon a Wasserstein Autoencoder, regularized by both a Maximum Mean Discrepancy (MMD) penalization and a Fully Input Convex Neural Network (FICNN) latent predictor, trained to infer the parameter count of architectures. This paper first assesses the embedding's suitability for optimization by solving 2 computationally inexpensive problems: minimizing the number of parameters, and maximizing a zero-shot accuracy proxy. Then, two variants of complexity-aware NAS are performed on CIFAR-10 and STL-10, based on two different search spaces, providing competitive NN architectures with limited model sizes.

摘要

神经架构搜索 (NAS) 的表现优于手工设计的神经网络 (NN)。然而,目前的 NAS 方法通常使用硬编码的搜索空间和预定义的分层架构。因此,将它们适应新问题可能很麻烦,并且很难知道是 NAS 算法还是预定义的分层结构对性能的影响最大。为了提高灵活性,减少对专家知识的依赖,本文提出了一种 NAS 方法,其中搜索空间易于定制,并允许进行全网络搜索。NAS 是在连续架构嵌入空间中使用基于高斯过程 (GP) 的贝叶斯优化 (BO) 来执行的。这个嵌入是基于 Wasserstein 自动编码器构建的,通过最大均值差异 (MMD) 惩罚和全输入凸神经网络 (FICNN) 潜在预测器进行正则化,训练来推断架构的参数数量。本文首先通过解决两个计算成本低的问题来评估嵌入空间的优化适用性:最小化参数数量,最大化零样本准确性代理。然后,在 CIFAR-10 和 STL-10 上进行了两种基于不同搜索空间的复杂度感知 NAS,提供了具有有限模型大小的竞争神经网络架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验