Suppr超能文献

利用宏基因组数据预测古代样本的地理起源。

Towards predicting the geographical origin of ancient samples with metagenomic data.

机构信息

Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.

Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.

出版信息

Sci Rep. 2024 Sep 18;14(1):21794. doi: 10.1038/s41598-023-40246-x.

Abstract

Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.

摘要

重建个体样本的历史——例如出生地和死亡地——是古 DNA(aDNA)研究的基本目标。然而,当样本来自博物馆收藏且档案不完整或有误时,确定死亡地点尤其具有挑战性。虽然人类 DNA 和同位素数据分析可以为我们提供个体的祖先信息,并提供有关其生活地点的线索,但它们无法具体追踪死亡地点。此外,虽然可以获取古代人类 DNA,但古代 DNA 研究中测序分子的很大一部分来自外源性 DNA。这些 DNA 通常在 aDNA 分析中被丢弃,主要由死后定居在埋藏遗骸中的土壤微生物的微生物 DNA 构成。在这项研究中,我们假设埋葬在同一或相近地理区域、暴露于相似微生物群落中的个体遗骸可能携带更相似的宏基因组。我们建议使用来自古代样本 shotgun 测序的宏基因组数据来定位特定个体的死亡地点,这也有助于解决样本标记错误的问题。我们使用基于 k-mer 的方法来计算来自不同地点的宏基因组样本之间的相似性得分,并提出了一种基于降维和逻辑回归的方法,以将目标样本分配到地理起源。我们将我们的方法应用于几个公共数据集,并观察到来自更接近地理位置的个体样本在其宏基因组中显示出更高的相似性,与不同起源的样本相比,这允许对测试样本进行良好的地理预测。此外,我们观察到链霉菌属通常渗透到古代遗骸中,是追踪样本地理起源的有价值的生物标志物。我们的结果提供了一个概念验证,并展示了宏基因组数据如何也可用于揭示古代样本的起源地。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f765/11411106/33a6e8fc6976/41598_2023_40246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验