Suppr超能文献

联邦图神经网络中的协同加权方法,用于有人类参与的疾病分类。

Collaborative weighting in federated graph neural networks for disease classification with the human-in-the-loop.

机构信息

Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, 8036, Graz, Austria.

Human-Centered AI Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190, Vienna, Austria.

出版信息

Sci Rep. 2024 Sep 19;14(1):21839. doi: 10.1038/s41598-024-72748-7.

Abstract

The authors introduce a novel framework that integrates federated learning with Graph Neural Networks (GNNs) to classify diseases, incorporating Human-in-the-Loop methodologies. This advanced framework innovatively employs collaborative voting mechanisms on subgraphs within a Protein-Protein Interaction (PPI) network, situated in a federated ensemble-based deep learning context. This methodological approach marks a significant stride in the development of explainable and privacy-aware Artificial Intelligence, significantly contributing to the progression of personalized digital medicine in a responsible and transparent manner.

摘要

作者提出了一种将联邦学习与图神经网络(GNN)相结合的新框架,以分类疾病,并结合了人机交互方法。该先进框架在联邦基于深度学习的环境中,创新性地采用了蛋白质-蛋白质相互作用(PPI)网络中子图上的协作投票机制。这种方法标志着可解释和隐私感知人工智能的发展迈出了重要一步,为负责任和透明的个性化数字医学的发展做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71d0/11410954/eebdb6fdb893/41598_2024_72748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验