文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过分层注意力网络进行基序感知的miRNA-疾病关联预测

Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network.

作者信息

Zhao Bo-Wei, He Yi-Zhou, Su Xiao-Rui, Yang Yue, Li Guo-Dong, Huang Yu-An, Hu Peng-Wei, You Zhu-Hong, Hu Lun

出版信息

IEEE J Biomed Health Inform. 2024 Jul;28(7):4281-4294. doi: 10.1109/JBHI.2024.3383591. Epub 2024 Jul 2.


DOI:10.1109/JBHI.2024.3383591
PMID:38557614
Abstract

As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.

摘要

作为基因表达的转录后调节因子,微小核糖核酸(miRNA)被视为多种疾病的潜在生物标志物。因此,预测miRNA与疾病的关联(MDA)对于深入了解疾病的发病机制和进展具有重要意义。现有的预测模型主要集中在整合不同来源的生物信息来执行MDA预测任务,而未能考虑基序水平上MDA网络信息的全部潜在效用。为了克服这个问题,我们通过融合各种高阶和低阶结构信息,提出了一种新颖的基序感知MDA预测模型,即MotifMDA。具体而言,我们首先根据其表征miRNA如何通过不同网络结构模式与疾病相关联的能力,设计了几个感兴趣的基序。然后,MotifMDA采用两层分层注意力来识别新的MDA。具体来说,第一个注意力层根据给定MDA网络中基序的出现情况学习高阶基序偏好,而第二个注意力层通过耦合高阶和低阶偏好来学习miRNA和疾病的最终嵌入。在两个基准数据集上的实验结果表明,MotifMDA优于几种现有最先进的预测模型。这有力地表明,仅依靠MDA网络信息就可以实现准确的MDA预测。此外,我们的案例研究表明,纳入基序水平的结构信息使MotifMDA能够从不同角度发现新的MDA。

相似文献

[1]
Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network.

IEEE J Biomed Health Inform. 2024-7

[2]
Incorporating higher order network structures to improve miRNA-disease association prediction based on functional modularity.

Brief Bioinform. 2023-1-19

[3]
MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.

Brief Bioinform. 2021-11-5

[4]
Disentangled similarity graph attention heterogeneous biological memory network for predicting disease-associated miRNAs.

BMC Genomics. 2024-12-2

[5]
Predicting miRNA-disease associations based on PPMI and attention network.

BMC Bioinformatics. 2023-3-23

[6]
Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.

Brief Bioinform. 2023-9-20

[7]
Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.

Brief Bioinform. 2024-7-25

[8]
ReHoGCNES-MDA: prediction of miRNA-disease associations using homogenous graph convolutional networks based on regular graph with random edge sampler.

Brief Bioinform. 2024-1-22

[9]
Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.

IEEE J Biomed Health Inform. 2024-2

[10]
MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.

Artif Intell Med. 2021-8

引用本文的文献

[1]
Generating random graphs with prescribed graphlet frequency bounds derived from probabilistic networks.

PLoS One. 2025-8-26

[2]
Ensemble learning methods and heterogeneous graph network fusion: building drug-gene-disease triple association prediction models.

Brief Bioinform. 2025-7-2

[3]
DeepWalk-Based Graph Embeddings for miRNA-Disease Association Prediction Using Deep Neural Network.

Biomedicines. 2025-2-20

[4]
Comparative evaluation of feature reduction methods for drug response prediction.

Sci Rep. 2024-12-28

[5]
Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting.

Med Oncol. 2024-12-17

[6]
A multi-task prediction method based on neighborhood structure embedding and signed graph representation learning to infer the relationship between circRNA, miRNA, and cancer.

Brief Bioinform. 2024-9-23

[7]
Sex differences and testosterone interfere with the structure of the gut microbiota through the bile acid signaling pathway.

Front Microbiol. 2024-10-18

[8]
Crossfeat: a transformer-based cross-feature learning model for predicting drug side effect frequency.

BMC Bioinformatics. 2024-10-8

[9]
Collaborative weighting in federated graph neural networks for disease classification with the human-in-the-loop.

Sci Rep. 2024-9-19

[10]
Exploring the role of topological descriptors to predict physicochemical properties of anti-HIV drugs by using supervised machine learning algorithms.

BMC Chem. 2024-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索