Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
Human Technopole, Milan, Italy.
Nat Methods. 2024 Nov;21(11):2147-2159. doi: 10.1038/s41592-024-02412-5. Epub 2024 Sep 18.
Organoids generating major cortical cell types in distinct compartments are used to study cortical development, evolution and disorders. However, the lack of morphogen gradients imparting cortical positional information and topography in current systems hinders the investigation of complex phenotypes. Here, we engineer human cortical assembloids by fusing an organizer-like structure expressing fibroblast growth factor 8 (FGF8) with an elongated organoid to enable the controlled modulation of FGF8 signaling along the longitudinal organoid axis. These polarized cortical assembloids mount a position-dependent transcriptional program that in part matches the in vivo rostrocaudal gene expression patterns and that is lost upon mutation in the FGFR3 gene associated with temporal lobe malformations and intellectual disability. By producing spatially oriented cell populations with signatures related to frontal and temporal area identity within individual assembloids, this model recapitulates in part the early transcriptional divergence embedded in the protomap and enables the study of cortical area-relevant alterations underlying human disorders.
在当前的系统中,缺乏赋予皮质位置信息和地形的形态发生梯度,这阻碍了对复杂表型的研究。在这里,我们通过融合表达成纤维细胞生长因子 8 (FGF8) 的类器官结构和伸长的类器官,来构建人类皮质集合体,从而实现对 FGF8 信号沿类器官长轴的控制调节。这些极化的皮质集合体启动了一个依赖于位置的转录程序,该程序部分与体内的头尾部基因表达模式相匹配,并且在与颞叶畸形和智力障碍相关的 FGFR3 基因突变时丢失。通过在单个集合体中产生具有与额区和颞区特征相关的空间定向细胞群体,该模型部分再现了原地图中嵌入的早期转录分化,并能够研究人类疾病相关的皮质区改变。