Suppr超能文献

从氧化物到可持续块状合金仅一步之遥。

One step from oxides to sustainable bulk alloys.

机构信息

Max Planck Institute for Sustainable Materials, Düsseldorf, Germany.

出版信息

Nature. 2024 Sep;633(8031):816-822. doi: 10.1038/s41586-024-07932-w. Epub 2024 Sep 18.

Abstract

Metallurgical production traditionally involves three steps: extracting metals from ores, mixing them into alloys by liquid processing and thermomechanical processing to achieve the desired microstructures. This sequential approach, practised since the Bronze Age, reaches its limit today because of the urgent demand for a sustainable economy: almost 10% of all greenhouse gas emissions are because of the use of fossil reductants and high-temperature metallurgical processing. Here we present a H-based redox synthesis and compaction approach that reforms traditional alloy-making by merging metal extraction, alloying and thermomechanical processing into one single solid-state operation. We propose a thermodynamically informed guideline and a general kinetic conception to dissolve the classical boundaries between extractive and physical metallurgy, unlocking tremendous sustainable bulk alloy design opportunities. We exemplify this approach for the case of Fe-Ni invar bulk alloys, one of the most appealing ferrous materials but the dirtiest to produce: invar shows uniquely low thermal expansion, enabling key applications spanning from precision instruments to cryogenic components. Yet, it is notoriously eco-unfriendly, with Ni causing more than 10 times higher CO emission than Fe per kilogram production, qualifying this alloy class as a perfect demonstrator case. Our sustainable method turns oxides directly into green alloys in bulk forms, with application-worthy properties, all obtained at temperatures far below the bulk melting point, while maintaining a zero CO footprint.

摘要

传统的冶金生产涉及三个步骤

从矿石中提取金属,通过液态加工和热机械加工将它们混合成合金,以达到所需的微观结构。这种自青铜时代以来一直采用的顺序方法,由于对可持续经济的迫切需求,今天已经达到了极限:几乎 10%的温室气体排放是由于使用化石还原剂和高温冶金加工造成的。在这里,我们提出了一种基于 H 的氧化还原合成和压实方法,通过将金属提取、合金化和热机械加工合并为一个单一的固态操作,对传统的合金制造方法进行了改革。我们提出了一个热力学指导原则和一个通用的动力学概念,以消除提取冶金和物理冶金之间的经典界限,为可持续的大块合金设计开辟了巨大的机会。我们以 Fe-Ni 因瓦 bulk 合金为例说明了这种方法,因瓦合金是最具吸引力的铁基材料之一,但也是最难生产的:因瓦合金具有独特的低热膨胀性,使其能够应用于从精密仪器到低温组件等关键领域。然而,它的生态友好性却备受争议,因为每生产一公斤镍就会比铁排放高出 10 多倍的 CO,使这种合金成为一个完美的示范案例。我们的可持续方法可直接将氧化物转化为具有应用价值的块状绿色合金,所有这些都在远低于块状熔点的温度下获得,同时保持零 CO 排放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd5/11424486/d0af810a7fb4/41586_2024_7932_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验