Suppr超能文献

可持续金属与合金的材料科学。

The Materials Science behind Sustainable Metals and Alloys.

机构信息

Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.

出版信息

Chem Rev. 2023 Mar 8;123(5):2436-2608. doi: 10.1021/acs.chemrev.2c00799. Epub 2023 Feb 27.

Abstract

Production of metals stands for 40% of all industrial greenhouse gas emissions, 10% of the global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes of by-products every year. Therefore, metals must become more sustainable. A circular economy model does not work, because market demand exceeds the available scrap currently by about two-thirds. Even under optimal conditions, at least one-third of the metals will also in the future come from primary production, creating huge emissions. Although the influence of metals on global warming has been discussed with respect to mitigation strategies and socio-economic factors, the fundamental materials science to make the metallurgical sector more sustainable has been less addressed. This may be attributed to the fact that the field of sustainable metals describes a global challenge, but not yet a homogeneous research field. However, the sheer magnitude of this challenge and its huge environmental effects, caused by more than 2 billion tonnes of metals produced every year, make its sustainability an essential research topic not only from a technological point of view but also from a basic materials research perspective. Therefore, this paper aims to identify and discuss the most pressing scientific bottleneck questions and key mechanisms, considering metal synthesis from primary (minerals), secondary (scrap), and tertiary (re-mined) sources as well as the energy-intensive downstream processing. Focus is placed on materials science aspects, particularly on those that help reduce CO emissions, and less on process engineering or economy. The paper does not describe the devastating influence of metal-related greenhouse gas emissions on climate, but scientific approaches how to solve this problem, through research that can render metallurgy fossil-free. The content is considering only direct measures to metallurgical sustainability (production) and not indirect measures that materials leverage through their properties (strength, weight, longevity, functionality).

摘要

金属生产占所有工业温室气体排放的 40%,占全球能源消耗的 10%,每年开采 32 亿吨矿物和数 10 亿吨副产品。因此,金属必须变得更加可持续。循环经济模式不起作用,因为目前市场需求超过可用废料约三分之二。即使在最佳条件下,未来至少有三分之一的金属也将来自初级生产,从而产生巨大的排放。尽管已经讨论了金属对全球变暖的影响,包括缓解策略和社会经济因素,但对于使冶金行业更具可持续性的基本材料科学研究却较少涉及。这可能归因于以下事实:可持续金属领域描述了一个全球性挑战,但尚未成为一个同质的研究领域。然而,每年生产的 20 多亿吨金属所带来的巨大挑战及其对环境的巨大影响,使得其可持续性不仅从技术角度,而且从基础材料研究的角度来看,都是一个重要的研究课题。因此,本文旨在确定和讨论最紧迫的科学瓶颈问题和关键机制,考虑从主要(矿石)、次要(废料)和次要(再开采)来源以及能源密集型下游加工合成金属。重点放在材料科学方面,特别是那些有助于减少 CO 排放的方面,而较少关注工艺工程或经济方面。本文不描述金属相关温室气体排放对气候的破坏性影响,而是描述解决这一问题的科学方法,即通过可以使冶金工艺无化石燃料的研究来实现。本文只考虑了冶金可持续性(生产)的直接措施,而没有考虑材料通过其特性(强度、重量、耐久性、功能性)利用的间接措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7abe/9999434/848a96603cad/cr2c00799_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验