Balbi Stefano, Bagstad Kenneth J, Magrach Ainhoa, Sanz Maria Jose, Aguilar-Amuchastegui Naikoa, Giupponi Carlo, Villa Ferdinando
Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, Sede Building 1, 1st floor, Barrio Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, 48009, Bilbao, Spain.
Environ Evid. 2022 Feb 17;11(1):5. doi: 10.1186/s13750-022-00258-y.
Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Facing a fast-increasing volume of data, information remains compartmentalized to pre-defined scales and fields, rarely building its way up to collective knowledge. Today's distributed corpus of human intelligence, including the scientific publication system, cannot be exploited with the efficiency needed to meet current evidence synthesis challenges; computer-based intelligence could assist this task. Artificial Intelligence (AI)-based approaches underlain by semantics and machine reasoning offer a constructive way forward, but depend on greater understanding of these technologies by the science and policy communities and coordination of their use. By labelling web-based scientific information to become readable by both humans and computers, machines can search, organize, reuse, combine and synthesize information quickly and in novel ways. Modern open science infrastructure-i.e., public data and model repositories-is a useful starting point, but without shared semantics and common standards for machine actionable data and models, our collective ability to build, grow, and share a collective knowledge base will remain limited. The application of semantic and machine reasoning technologies by a broad community of scientists and decision makers will favour open synthesis to contribute and reuse knowledge and apply it toward decision making.
全球环境议程的关键社会生态挑战(如气候变化、生物多样性保护、可持续发展目标)的进展受到现有科学证据缺乏整合与综合的阻碍。面对数据量的快速增长,信息仍局限于预先定义的规模和领域,很少能上升为集体知识。包括科学出版系统在内的当今分布式人类智能语料库,无法以应对当前证据综合挑战所需的效率加以利用;基于计算机的智能可以协助这项任务。基于语义和机器推理的人工智能方法提供了一条建设性的前进道路,但这取决于科学界和政策界对这些技术有更深入的理解以及对其使用进行协调。通过对基于网络的科学信息进行标注,使其能被人类和计算机读取,机器就能快速且以新颖的方式搜索、组织、复用、组合和综合信息。现代开放科学基础设施,即公共数据和模型存储库,是一个有用的起点,但如果没有机器可操作数据和模型的共享语义和通用标准,我们构建、扩展和共享集体知识库的集体能力将仍然有限。广大科学家和决策者应用语义和机器推理技术将有利于开放式综合,以贡献和复用知识并将其应用于决策。