Kvile Kristina Øie, Gundersen Hege, Poulsen Robert Nøddebo, Sample James Edward, Salberg Arnt-Børre, Ghareeb Medyan Esam, Buls Toms, Bekkby Trine, Hancke Kasper
Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
SpectroFly ApS, Markstien 2, 4640 Faxe, Denmark.
MethodsX. 2024 Aug 30;13:102935. doi: 10.1016/j.mex.2024.102935. eCollection 2024 Dec.
Aerial drone imaging is an efficient tool for mapping and monitoring of coastal habitats at high spatial and temporal resolution. Specifically, drone imaging allows for time- and cost-efficient mapping covering larger areas than traditional mapping and monitoring techniques, while also providing more detailed information than those from airplanes and satellites, enabling for example to differentiate various types of coastal vegetation. Here, we present a systematic method for shallow water habitat classification based on drone imagery. The method includes:•Collection of drone images and creation of orthomosaics.•Gathering ground-truth data in the field to guide the image annotation and to validate the final map product.•Annotation of drone images into - potentially hierarchical - habitat classes and training of machine learning algorithms for habitat classification.As a case study, we present a field campaign that employed these methods to map a coastal site dominated by seagrass, seaweed and kelp, in addition to sediments and rock. Such detailed but efficient mapping and classification can aid to understand and sustainably manage ecologically and valuable marine ecosystems.
航空无人机成像技术是一种高效工具,可用于以高空间和时间分辨率绘制及监测沿海栖息地。具体而言,无人机成像技术相比传统测绘和监测技术,能够以更低的时间和成本绘制更大区域,同时还能提供比飞机和卫星拍摄的图像更详细的信息,例如能够区分各类沿海植被。在此,我们展示一种基于无人机图像的浅水栖息地分类系统方法。该方法包括:
无人机图像采集及正射镶嵌图创建。
在实地收集地面真值数据,以指导图像标注并验证最终地图产品。
将无人机图像标注为潜在的分层栖息地类别,并训练用于栖息地分类的机器学习算法。
作为案例研究,我们展示了一项实地活动,该活动运用这些方法绘制了一个以海草、海藻和海带为主,还包括沉积物和岩石的沿海区域。这种详细而高效的测绘和分类有助于理解并可持续管理具有生态价值的海洋生态系统。