Dijkstra Louis, Schink Tania, Linder Roland, Schwaninger Markus, Pigeot Iris, Wright Marvin N, Foraita Ronja
Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
Techniker Krankenkasse - TK, Hamburg, Germany.
Front Pharmacol. 2024 Sep 4;15:1426323. doi: 10.3389/fphar.2024.1426323. eCollection 2024.
Pharmacovigilance is vital for drug safety. The process typically involves two key steps: initial signal generation from spontaneous reporting systems (SRSs) and subsequent expert review to assess the signals' (potential) causality and decide on the appropriate action.
We propose a novel discovery and verification approach to pharmacovigilance based on electronic healthcare data. We enhance the signal detection phase by introducing an ensemble of methods which generated signals are combined using Borda count ranking; a method designed to emphasize consensus. Ensemble methods tend to perform better when data is noisy and leverage the strengths of individual classifiers, while trying to mitigate some of their limitations. Additionally, we offer the committee of medical experts with the option to perform an in-depth investigation of selected signals through tailored pharmacoepidemiological studies to evaluate their plausibility or spuriousness. To illustrate our approach, we utilize data from the German Pharmacoepidemiological Research Database, focusing on drug reactions to the direct oral anticoagulant rivaroxaban.
In this example, the ensemble method is built upon the Bayesian confidence propagation neural network, longitudinal Gamma Poisson shrinker, penalized regression and random forests. We also conduct a pharmacoepidemiological verification study in the form of a nested active comparator case-control study, involving patients diagnosed with atrial fibrillation who initiated anticoagulant treatment between 2011 and 2017.
The case study reveals our ability to detect known adverse drug reactions and discover new signals. Importantly, the ensemble method is computationally efficient. Hasty false conclusions can be avoided by a verification study, which is, however, time-consuming to carry out. We provide an online tool for easy application: https://borda.bips.eu.
药物警戒对药物安全至关重要。该过程通常涉及两个关键步骤:从自发报告系统(SRSs)中生成初始信号,以及随后由专家进行审查,以评估信号的(潜在)因果关系并决定采取适当行动。
我们提出了一种基于电子医疗数据的药物警戒新发现与验证方法。我们通过引入一组方法来增强信号检测阶段,这些方法生成的信号使用博尔达计数排序进行组合;这是一种旨在强调共识的方法。当数据存在噪声时,集成方法往往表现得更好,它利用了各个分类器的优势,同时试图减轻它们的一些局限性。此外,我们为医学专家委员会提供了通过量身定制的药物流行病学研究对选定信号进行深入调查的选项,以评估其合理性或虚假性。为了说明我们的方法,我们使用了来自德国药物流行病学研究数据库的数据,重点关注直接口服抗凝剂利伐沙班的药物反应。
在这个例子中,集成方法基于贝叶斯置信传播神经网络、纵向伽马泊松收缩器、惩罚回归和随机森林构建。我们还以嵌套活性对照病例对照研究的形式进行了一项药物流行病学验证研究,涉及2011年至2017年间开始抗凝治疗的房颤患者。
案例研究揭示了我们检测已知药物不良反应和发现新信号的能力。重要的是,集成方法计算效率高。通过验证研究可以避免仓促得出错误结论,然而,进行验证研究耗时较长。我们提供了一个便于应用的在线工具:https://borda.bips.eu。