Suppr超能文献

肛门鳞状上皮内病变基于散射的光片显微镜图像的自动化分析

Automated analysis of scattering-based light sheet microscopy images of anal squamous intraepithelial lesions.

作者信息

Kim Yongjun, Zhao Jingwei, Liang Brooke, Sugimura Momoka, Marcelino Kenneth, Romero Rafael, Nessaee Ameer, Ocaya Carmella, Lim Koeun, Roe Denise, Khan Michelle J, Yang Eric J, Kang Dongkyun

机构信息

Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA.

James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Biomed Opt Express. 2024 Aug 28;15(9):5547-5559. doi: 10.1364/BOE.531700. eCollection 2024 Sep 1.

Abstract

We developed an algorithm for automatically analyzing scattering-based light sheet microscopy (sLSM) images of anal squamous intraepithelial lesions. We developed a method for automatically segmenting sLSM images for nuclei and calculating seven features: nuclear intensity, intensity slope as a function of depth, nuclear-to-nuclear distance, nuclear-to-cytoplasm ratio, cell density, nuclear area, and proportion of pixels corresponding to nuclei. 187 images from 80 anal biopsies were used for feature analysis and classifier development. The automated nuclear segmentation method provided reliable performance with the precision of 0.97 and recall of 0.91 when compared with the manual segmentation. Among the seven features, six showed statistically significant differences between high-grade squamous intraepithelial lesion (HSIL) and non-HSIL (non-dysplastic or low-grade squamous intraepithelial lesion, LSIL). A classifier using linear support vector machine (SVM) achieved promising performance in diagnosing HSIL versus non-HSIL: sensitivity of 90%, specificity of 70%, and area under the curve (AUC) of 0.89 for per-image diagnosis, and sensitivity of 90%, specificity of 80%, and AUC of 0.92 for per-biopsy diagnosis.

摘要

我们开发了一种算法,用于自动分析肛门鳞状上皮内病变的基于散射的光片显微镜(sLSM)图像。我们开发了一种方法,用于自动分割sLSM图像中的细胞核,并计算七个特征:核强度、作为深度函数的强度斜率、核间距、核质比、细胞密度、核面积以及对应于细胞核的像素比例。来自80例肛门活检的187张图像用于特征分析和分类器开发。与手动分割相比,自动核分割方法具有可靠的性能,精度为0.97,召回率为0.91。在这七个特征中,六个在高级别鳞状上皮内病变(HSIL)和非HSIL(非发育异常或低级别鳞状上皮内病变,LSIL)之间显示出统计学上的显著差异。使用线性支持向量机(SVM)的分类器在诊断HSIL与非HSIL方面取得了有前景的性能:每张图像诊断的灵敏度为90%,特异性为70%,曲线下面积(AUC)为0.89;每次活检诊断的灵敏度为90%,特异性为80%,AUC为0.92。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b09/11407269/dbe2dab5f09c/boe-15-9-5547-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验