Suppr超能文献

多任务网络用于高分辨率内窥镜图像的自动分析,以检测宫颈癌前病变和癌症。

Multi-task network for automated analysis of high-resolution endomicroscopy images to detect cervical precancer and cancer.

机构信息

Rice University, Houston, TX 77005, USA.

University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Comput Med Imaging Graph. 2022 Apr;97:102052. doi: 10.1016/j.compmedimag.2022.102052. Epub 2022 Feb 26.

Abstract

Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point-of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME images. The proposed multi-task convolutional neural network uses nuclear segmentation to learn a diagnostically relevant representation. Nuclear segmentation was trained via proxy labels to circumvent the need for expensive, manually annotated nuclear masks. A dataset of images from over 1600 patients was used to train, validate, and test our algorithm; data from 20% of patients were reserved for testing. An external evaluation set with images from 508 patients was used to further validate our findings. The proposed method consistently outperformed other state-of-the art architectures achieving a test per patient area under the receiver operating characteristic curve (AUC-ROC) of 0.87. Performance was comparable to expert colposcopy with a test sensitivity and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), respectively. Patients with recurrent human papillomavirus (HPV) infections are at a higher risk of developing cervical cancer. Thus, we sought to incorporate HPV DNA test results as a feature to inform prediction. We found that incorporating patient HPV status improved test specificity to 0.71 at a sensitivity of 0.94.

摘要

在资源有限的中低收入国家,宫颈癌是一个公共卫生紧急事件,这阻碍了标准护理预防策略的实施。高分辨率内镜(HRME)是一种低成本、即时护理的设备,护理提供者可以用其对宫颈病变的核形态进行成像。在这里,我们提出了一个深度学习框架,用于从 HRME 图像中诊断 2 级及以上的宫颈上皮内瘤变。所提出的多任务卷积神经网络使用核分割来学习具有诊断相关性的表示。核分割是通过代理标签进行训练的,以避免使用昂贵的、手动标注的核掩模的需求。我们的算法是使用来自 1600 多名患者的图像数据集进行训练、验证和测试的;20%的患者的数据被保留用于测试。使用来自 508 名患者的外部评估集来进一步验证我们的发现。所提出的方法始终优于其他最先进的架构,在每个患者的测试中,接收器操作特征曲线(AUC-ROC)的面积达到 0.87。性能与专家阴道镜检查相当,测试灵敏度和特异性分别为 0.94(p=0.3)和 0.58(p=1.0)。复发性人乳头瘤病毒(HPV)感染的患者患宫颈癌的风险更高。因此,我们试图将 HPV DNA 检测结果作为一种特征纳入预测。我们发现,将患者的 HPV 状态纳入其中可以将测试特异性提高到 0.71,而灵敏度为 0.94。

相似文献

引用本文的文献

9
Improvement method for cervical cancer detection: A comparative analysis.提高宫颈癌检出率的方法:对比分析。
Oncol Res. 2022 Oct 10;29(5):365-376. doi: 10.32604/or.2022.025897. eCollection 2021.
10
Cervical Cancer Detection Techniques: A Chronological Review.宫颈癌检测技术:按时间顺序的综述
Diagnostics (Basel). 2023 May 17;13(10):1763. doi: 10.3390/diagnostics13101763.

本文引用的文献

3
HPV Vaccination and the Risk of Invasive Cervical Cancer.HPV 疫苗接种与浸润性宫颈癌风险。
N Engl J Med. 2020 Oct 1;383(14):1340-1348. doi: 10.1056/NEJMoa1917338.
7
Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images.基于时滞阴道镜图像的计算机辅助宫颈癌诊断
IEEE Trans Med Imaging. 2020 Nov;39(11):3403-3415. doi: 10.1109/TMI.2020.2994778. Epub 2020 Oct 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验