Rice University, Houston, TX 77005, USA.
University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Comput Med Imaging Graph. 2022 Apr;97:102052. doi: 10.1016/j.compmedimag.2022.102052. Epub 2022 Feb 26.
Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point-of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME images. The proposed multi-task convolutional neural network uses nuclear segmentation to learn a diagnostically relevant representation. Nuclear segmentation was trained via proxy labels to circumvent the need for expensive, manually annotated nuclear masks. A dataset of images from over 1600 patients was used to train, validate, and test our algorithm; data from 20% of patients were reserved for testing. An external evaluation set with images from 508 patients was used to further validate our findings. The proposed method consistently outperformed other state-of-the art architectures achieving a test per patient area under the receiver operating characteristic curve (AUC-ROC) of 0.87. Performance was comparable to expert colposcopy with a test sensitivity and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), respectively. Patients with recurrent human papillomavirus (HPV) infections are at a higher risk of developing cervical cancer. Thus, we sought to incorporate HPV DNA test results as a feature to inform prediction. We found that incorporating patient HPV status improved test specificity to 0.71 at a sensitivity of 0.94.
在资源有限的中低收入国家,宫颈癌是一个公共卫生紧急事件,这阻碍了标准护理预防策略的实施。高分辨率内镜(HRME)是一种低成本、即时护理的设备,护理提供者可以用其对宫颈病变的核形态进行成像。在这里,我们提出了一个深度学习框架,用于从 HRME 图像中诊断 2 级及以上的宫颈上皮内瘤变。所提出的多任务卷积神经网络使用核分割来学习具有诊断相关性的表示。核分割是通过代理标签进行训练的,以避免使用昂贵的、手动标注的核掩模的需求。我们的算法是使用来自 1600 多名患者的图像数据集进行训练、验证和测试的;20%的患者的数据被保留用于测试。使用来自 508 名患者的外部评估集来进一步验证我们的发现。所提出的方法始终优于其他最先进的架构,在每个患者的测试中,接收器操作特征曲线(AUC-ROC)的面积达到 0.87。性能与专家阴道镜检查相当,测试灵敏度和特异性分别为 0.94(p=0.3)和 0.58(p=1.0)。复发性人乳头瘤病毒(HPV)感染的患者患宫颈癌的风险更高。因此,我们试图将 HPV DNA 检测结果作为一种特征纳入预测。我们发现,将患者的 HPV 状态纳入其中可以将测试特异性提高到 0.71,而灵敏度为 0.94。