Tukur Frank, Mabe Taylor, Liu Mengxin, Tukur Panesun, Wei Jianjun
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States.
3i Nanotech, Inc., 2901 E. Gate City Blvd, Greensboro, North Carolina 27401, United States.
ACS Appl Nano Mater. 2024 Aug 16;7(17):20024-20033. doi: 10.1021/acsanm.4c02524. eCollection 2024 Sep 13.
Optical sensors face challenges when detecting ultralow amounts of analytes in whole blood, including signal quenching due to optical absorption and false positives due to nonspecific binding. This study introduces gold nanoscale array features termed nanoledges (NLs), which interact with incident white light to produce a transmitted surface plasmon resonance (tSPR) signal. This extraordinary optical transmission (EOT) spectrum occurs in the near-infrared (NIR) region, thereby minimizing signal quenching caused by visible-light absorption from blood proteins and pigments. To develop a sensitive, selective, and label-free optical biosensor for detecting various levels of cardiac troponin I (cTnI) in very small volumes of whole blood samples, DNA aptamers are tethered to the NL surface, specifically binding to the cTnI biomarker. This biological binding activity alters the refractive index at the NL surface, causing a peak shift in the EOT spectrum and enabling quantification of cTnI levels. The NL array chip demonstrated high sensitivity for cTnI detection in buffer, human serum (HS), and human whole blood (HB), with detection limits of 0.079, 0.084, and 0.097 ng/mL, respectively. Control measurements using blank target mediums and those containing up to 125 ng/mL of other proteins, such as myoglobin, creatine kinase, and heparin, showed minimal interference and high specificity. The NL plasmonic array's performance in biosensing underscores its promise for clinical analysis and its potential development as a point-of-care platform for early cardiovascular disease (CVD) diagnostics.
在检测全血中极少量的分析物时,光学传感器面临诸多挑战,包括因光吸收导致的信号猝灭以及因非特异性结合产生的假阳性。本研究引入了称为纳米棱边(NLs)的金纳米级阵列特征,其与入射白光相互作用以产生透射表面等离子体共振(tSPR)信号。这种非凡的光学透射(EOT)光谱出现在近红外(NIR)区域,从而将血液中蛋白质和色素对可见光吸收引起的信号猝灭降至最低。为了开发一种灵敏、选择性好且无需标记的光学生物传感器,用于在极少量全血样本中检测不同水平的心肌肌钙蛋白I(cTnI),将DNA适配体连接到NL表面,使其特异性结合cTnI生物标志物。这种生物结合活性改变了NL表面的折射率,导致EOT光谱中的峰值发生偏移,从而能够对cTnI水平进行定量。NL阵列芯片在缓冲液、人血清(HS)和人全血(HB)中对cTnI检测表现出高灵敏度,检测限分别为0.079、0.084和0.097 ng/mL。使用空白目标介质以及含有高达125 ng/mL其他蛋白质(如肌红蛋白、肌酸激酶和肝素)的对照测量显示干扰极小且特异性高。NL等离子体阵列在生物传感方面的性能突出了其在临床分析中的前景以及作为早期心血管疾病(CVD)诊断即时检测平台的潜在发展价值。