Suppr超能文献

基于卷积神经网络的帕金森病多模态视网膜图像分类

Multimodal Retinal Imaging Classification for Parkinson's Disease Using a Convolutional Neural Network.

机构信息

Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.

iMIND Research Group, Duke University School of Medicine, Durham, NC, USA.

出版信息

Transl Vis Sci Technol. 2024 Aug 1;13(8):23. doi: 10.1167/tvst.13.8.23.

Abstract

PURPOSE

Changes in retinal structure and microvasculature are connected to parallel changes in the brain. Two recent studies described machine learning algorithms trained on retinal images and quantitative data that identified Alzheimer's dementia and mild cognitive impairment with high accuracy. Prior studies also demonstrated retinal differences in individuals with PD. Herein, we developed a convolutional neural network (CNN) to classify multimodal retinal imaging from either a Parkinson's disease (PD) or control group.

METHODS

We trained a CNN to receive retinal image inputs of optical coherence tomography (OCT) ganglion cell-inner plexiform layer (GC-IPL) thickness color maps, OCT angiography 6 × 6-mm en face macular images of the superficial capillary plexus, and ultra-widefield (UWF) fundus color and autofluorescence photographs to classify the retinal imaging as PD or control. The model consists of a shared pretrained VGG19 feature extractor and image-specific feature transformations which converge to a single output. Model results were assessed using receiver operating characteristic (ROC) curves and bootstrapped 95% confidence intervals for area under the ROC curve (AUC) values.

RESULTS

In total, 371 eyes of 249 control subjects and 75 eyes of 52 PD subjects were used for training, validation, and testing. Our best CNN variant achieved an AUC of 0.918. UWF color photographs were the most effective imaging input, and GC-IPL thickness maps were the least contributory.

CONCLUSIONS

Using retinal images, our pilot CNN was able to identify individuals with PD and serves as a proof of concept to spur the collection of larger imaging datasets needed for clinical-grade algorithms.

TRANSLATIONAL RELEVANCE

Developing machine learning models for automated detection of Parkinson's disease from retinal imaging could lead to earlier and more widespread diagnoses.

摘要

目的

视网膜结构和微血管的变化与大脑的变化密切相关。最近的两项研究描述了基于视网膜图像和定量数据的机器学习算法,这些算法可以高精度地识别阿尔茨海默病痴呆症和轻度认知障碍。之前的研究也表明帕金森病患者的视网膜存在差异。在此,我们开发了一种卷积神经网络(CNN),用于对来自帕金森病(PD)或对照组的多模态视网膜成像进行分类。

方法

我们训练了一个 CNN,以接收光学相干断层扫描(OCT)神经节细胞-内丛状层(GC-IPL)厚度彩色图、OCT 血管造影 6×6mm 浅层毛细血管丛额状图像、超广角(UWF)眼底彩色和自发荧光照片的视网膜图像输入,以将视网膜成像分类为 PD 或对照。该模型由一个共享的预训练 VGG19 特征提取器和特定于图像的特征变换组成,这些特征变换收敛到单个输出。使用接收者操作特征(ROC)曲线和bootstrap 95%置信区间评估模型结果,以评估 ROC 曲线下面积(AUC)值。

结果

总共使用了 249 名对照受试者的 371 只眼和 52 名 PD 受试者的 75 只眼进行训练、验证和测试。我们最好的 CNN 变体的 AUC 为 0.918。UWF 彩色照片是最有效的成像输入,而 GC-IPL 厚度图贡献最小。

结论

使用视网膜图像,我们的试点 CNN 能够识别 PD 患者,这为收集更大的成像数据集以用于临床级算法提供了概念验证。

翻译

杨婧

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e2/11323992/7d7c8054afc2/tvst-13-8-23-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验