LISAC Laboratory, Department of Informatics, Universite Sidi Mohamed Ben Abdellah Faculte des Sciences Dhar El Mahraz, Fez, Morocco.
Ophthalmology department Hassan II Hospital, Universite Sidi Mohamed Ben Abdellah Faculte des Sciences Dhar El Mahraz, Fez, Morocco.
J Digit Imaging. 2023 Aug;36(4):1739-1751. doi: 10.1007/s10278-023-00813-0. Epub 2023 Mar 27.
Diabetic retinopathy (DR) is one of the most common consequences of diabetes. It affects the retina, causing blood vessel damage which can lead to loss of vision. Saving patients from losing their sight or at least slowing the progress of this disease depends mainly on the early detection of this pathology, on top of the detection of its specific stage. Furthermore, the early detection of diabetic retinopathy and the follow-up of the patient's condition remains an arduous task, whether for an experienced expert ophthalmologist or a computer-aided diagnosis technician. In this paper, we aim to propose a new automatic diabetic retinopathy severity level detection method. The proposed approach merges the pyramid hierarchy of the discrete wavelet transform of the retina fundus image with the modified capsule network and the modified inception block proposed, in addition to a new deep hybrid model that concatenates the inception block with capsule networks. The performance of our proposed approach has been validated on the APTOS dataset, as it achieved a high training accuracy of 97.71% and a high testing accuracy score of 86.54%, which is considered one of the best scores achieved in this field using the same dataset.
糖尿病性视网膜病变(DR)是糖尿病最常见的后果之一。它影响视网膜,导致血管损伤,从而导致视力丧失。要使患者免于失明,或者至少减缓这种疾病的进展,主要取决于早期发现这种病理,以及发现其特定阶段。此外,无论是对于有经验的专家眼科医生还是计算机辅助诊断技术人员来说,糖尿病性视网膜病变的早期检测和患者病情的随访仍然是一项艰巨的任务。在本文中,我们旨在提出一种新的自动糖尿病性视网膜病变严重程度检测方法。所提出的方法将视网膜眼底图像的离散小波变换的金字塔层次结构与所提出的改进胶囊网络和改进的 inception 块融合在一起,此外还提出了一种新的深度混合模型,该模型将 inception 块与胶囊网络串联起来。我们的方法的性能已经在 APTOS 数据集上进行了验证,因为它在训练中达到了 97.71%的高准确率,在测试中达到了 86.54%的高准确率得分,这被认为是使用相同数据集在该领域取得的最佳成绩之一。