Suppr超能文献

运用机器学习识别胃癌术后发生低骨密度或骨质疏松症高危患者:一项 10 年多中心回顾性分析。

Using machine learning to identify patients at high risk of developing low bone density or osteoporosis after gastrectomy: a 10-year multicenter retrospective analysis.

机构信息

Wuxi Medical Center of Nanjing Medical University, Wuxi, China.

Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

出版信息

J Cancer Res Clin Oncol. 2023 Dec;149(19):17479-17493. doi: 10.1007/s00432-023-05472-w. Epub 2023 Oct 28.

Abstract

INTRODUCTION

Osteoporosis that emerges subsequent to gastrectomy poses a significant threat to the long-term health of patients. The primary objective of this investigation was to formulate a machine learning algorithm capable of identifying substantial preoperative, intraoperative, and postoperative risk factors. This algorithm, in turn, would enable the anticipation of osteoporosis occurrence after gastrectomy.

METHODS

This research encompassed a cohort of 1125 patients diagnosed with gastric cancer, including 108 individuals with low bone density or osteoporosis. A total of 40 distinct variables were collected, comprising patient demographics, pertinent medical history, medication records, preoperative examination attributes, surgical procedure specifics, and intraoperative details. Four distinct machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN)-were employed to establish the predictive model. Evaluation of the models involved receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Shapley additive explanation (SHAP) was employed for visualization and analysis.

RESULTS

Among the four prediction models employed, the XGBoost algorithm demonstrated exceptional performance. The ROC analysis yielded excellent predictive accuracy, showcasing area under the curve (AUC) values of 0.957 and 0.896 for training and validation sets, respectively. The calibration curve further confirmed the robust predictive capacity of the XGBoost model. The DCA demonstrated a notably higher benefit rate for patients undergoing intervention based on the XGBoost model. Moreover, the AUC value of 0.73 for the external validation set indicated favorable extrapolation of the XGBoost prediction model. SHAP analysis outcomes unveiled numerous high-risk factors for osteoporosis development after gastrectomy, including a history of chronic obstructive pulmonary disease (COPD), inflammatory bowel disease (IBD), hypoproteinemia, postoperative neutrophil-to-lymphocyte ratio (NLR) exceeding 3, steroid usage history, advanced age, and absence of calcitonin use.

CONCLUSION

The osteoporosis prediction model derived through the XGBoost machine learning algorithm in this study displays remarkable predictive precision and carries significant clinical applicability.

摘要

简介

胃切除术后出现的骨质疏松症对患者的长期健康构成重大威胁。本研究的主要目的是制定一种能够识别大量术前、术中、术后风险因素的机器学习算法。该算法反过来可以预测胃癌患者胃切除术后发生骨质疏松症的可能性。

方法

本研究纳入了 1125 例胃癌患者,其中 108 例患者存在骨密度低或骨质疏松症。共收集了 40 个不同的变量,包括患者人口统计学信息、相关病史、用药记录、术前检查指标、手术过程细节和术中细节。采用极端梯度提升(XGBoost)、随机森林(RF)、支持向量机(SVM)和 K 最近邻算法(KNN)四种不同的机器学习算法建立预测模型。通过受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)对模型进行评估。Shapley 加性解释(SHAP)用于可视化和分析。

结果

在使用的四种预测模型中,XGBoost 算法表现出色。ROC 分析显示出出色的预测准确性,训练集和验证集的曲线下面积(AUC)值分别为 0.957 和 0.896。校准曲线进一步证实了 XGBoost 模型强大的预测能力。DCA 表明,基于 XGBoost 模型对接受干预的患者具有更高的获益率。此外,外部验证集的 AUC 值为 0.73,表明 XGBoost 预测模型具有良好的外推能力。SHAP 分析结果揭示了胃切除术后骨质疏松发生的许多高风险因素,包括慢性阻塞性肺疾病(COPD)、炎症性肠病(IBD)、低蛋白血症、术后中性粒细胞与淋巴细胞比值(NLR)超过 3、类固醇使用史、年龄较大以及未使用降钙素。

结论

本研究通过 XGBoost 机器学习算法构建的骨质疏松预测模型具有出色的预测精度,具有重要的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验