Hou Jinhui, Zhu Zhiyu, Hou Junhui, Zeng Huanqiang, Wu Jinjian, Zhou Jiantao
IEEE Trans Image Process. 2022;31:5720-5732. doi: 10.1109/TIP.2022.3201478. Epub 2022 Sep 2.
In this paper, we investigate the problem of hyperspectral (HS) image spatial super-resolution via deep learning. Particularly, we focus on how to embed the high-dimensional spatial-spectral information of HS images efficiently and effectively. Specifically, in contrast to existing methods adopting empirically-designed network modules, we formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events, including layer-wise spatial-spectral feature extraction and network-level feature aggregation. Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable, producing PDE-Net, in which high-resolution (HR) HS images are iteratively refined from the residuals between input low-resolution (LR) HS images and pseudo-LR-HS images degenerated from reconstructed HR-HS images via probability-inspired HS embedding. Extensive experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods. Besides, the probabilistic characteristic of this kind of networks can provide the epistemic uncertainty of the network outputs, which may bring additional benefits when used for other HS image-based applications. The code will be publicly available at https://github.com/jinnh/PDE-Net.
在本文中,我们研究了通过深度学习实现高光谱(HS)图像空间超分辨率的问题。特别地,我们专注于如何高效且有效地嵌入HS图像的高维空间光谱信息。具体而言,与采用经验设计网络模块的现有方法不同,我们将HS嵌入表述为一组精心定义的HS嵌入事件后验分布的近似,包括逐层空间光谱特征提取和网络级特征聚合。然后,我们将提出的特征嵌入方案纳入一个物理上可解释的源一致超分辨率框架,生成PDE-Net,其中通过概率启发式HS嵌入从输入低分辨率(LR)HS图像与从重建的高分辨率(HR)HS图像退化而来的伪LR-HS图像之间的残差中迭代细化高分辨率(HR)HS图像。在三个常见基准数据集上进行的大量实验表明,PDE-Net比现有方法具有更优的性能。此外,这类网络的概率特性可以提供网络输出的认知不确定性,这在用于其他基于HS图像的应用时可能会带来额外的好处。代码将在https://github.com/jinnh/PDE-Net上公开提供。