Suppr超能文献

用于高光谱图像超分辨率的跨范围空间光谱信息聚合

Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral Image Super-Resolution.

作者信息

Chen Shi, Zhang Lefei, Zhang Liangpei

出版信息

IEEE Trans Image Process. 2024;33:5878-5891. doi: 10.1109/TIP.2024.3468905. Epub 2024 Oct 18.

Abstract

Hyperspectral image super-resolution has attained widespread prominence to enhance the spatial resolution of hyperspectral images. However, convolution-based methods have encountered challenges in harnessing the global spatial-spectral information. The prevailing transformer-based methods have not adequately captured the long-range dependencies in both spectral and spatial dimensions. To alleviate this issue, we propose a novel cross-scope spatial-spectral Transformer (CST) to efficiently investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution. Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics. By integrating global information into the rectangle-window self-attention, we first design a cross-scope spatial self-attention to facilitate long-range spatial interactions. Then, by leveraging appropriately characteristic spatial-spectral features, we construct a cross-scope spectral self-attention to effectively capture the intrinsic correlations among global spectral bands. Finally, we elaborate a concise feed-forward neural network to enhance the feature representation capacity in the Transformer structure. Extensive experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually. The code is available at https://github.com/Tomchenshi/CST.git.

摘要

高光谱图像超分辨率技术已在提升高光谱图像空间分辨率方面得到广泛关注。然而,基于卷积的方法在利用全局空间-光谱信息时面临挑战。主流的基于Transformer的方法未能充分捕捉光谱和空间维度上的长程依赖关系。为缓解这一问题,我们提出一种新颖的跨域空间-光谱Transformer(CST),以高效研究单幅高光谱图像超分辨率中的长程空间和光谱相似性。具体而言,我们在空间和光谱维度设计了交叉注意力机制,以全面建模长程空间-光谱特征。通过将全局信息整合到矩形窗口自注意力中,我们首先设计了一种跨域空间自注意力,以促进长程空间交互。然后,通过利用适当的特征空间-光谱特征,我们构建了一种跨域光谱自注意力,以有效捕捉全局光谱波段之间的内在相关性。最后,我们精心设计了一个简洁的前馈神经网络,以增强Transformer结构中的特征表示能力。在三个高光谱数据集上进行的大量实验表明,所提出的CST在定量和视觉上均优于其他现有先进方法。代码可在https://github.com/Tomchenshi/CST.git获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验