Suppr超能文献

通过新型铜基导电金属有机框架提高电化学二氧化碳还原为甲烷的效率。

Increasing electrochemical carbon dioxide reduction to methane via a novel copper-based conductive metal organic framework.

作者信息

Jing Zhongyu, Su Wenli, Fan Yu

机构信息

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China.

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt C):251-260. doi: 10.1016/j.jcis.2024.09.124. Epub 2024 Sep 15.

Abstract

The development of a new system for the electrochemical carbon dioxide reduction reaction (ECORR) to methane (CH) is challenging, and novel conductive metal organic frameworks (c-MOFs) for efficient ECORR to CH are critical to this system. Here, we report a novel c-MOF, copper-pyromellitic dianhydride-2-methylbenzimidazole (Cu-PD-2-MBI), in which the introduction of electron-withdrawing 2-methylbenzimidazole (2-MBI) into the copper-pyromellitic dianhydride (Cu-PD) interlayer elevated the valence of copper (Cu) ions, which improved the ECORR performance of Cu-PD-2-MBI. Cu-PD-2-MBI was tested in a flow cell, and the Faradaic efficiency of CH reached 73.7 %, with a corresponding partial current density of -428.3 mA·cm at -1.3 V, which was higher than those of most reported Cu-based catalysts. Further exploration via theoretical calculations indicated that the intercalated 2-MBI in Cu-PD-2-MBI induced a shift in the d-band center in the Cu sites from -2.63 to -1.86 eV and reduced the formation energy of the *COOH and *CHO intermediates in the process of generating CH compared with those of the reference Cu-PD catalyst.

摘要

开发一种用于将电化学二氧化碳还原反应(ECORR)转化为甲烷(CH₄)的新系统具有挑战性,而用于高效将ECORR转化为CH₄的新型导电金属有机框架(c-MOFs)对该系统至关重要。在此,我们报道了一种新型c-MOF,铜-均苯四甲酸二酐-2-甲基苯并咪唑(Cu-PD-2-MBI),其中将吸电子的2-甲基苯并咪唑(2-MBI)引入铜-均苯四甲酸二酐(Cu-PD)层间提高了铜(Cu)离子的价态,从而改善了Cu-PD-2-MBI的ECORR性能。在流动池中对Cu-PD-2-MBI进行了测试,在-1.3 V时CH₄的法拉第效率达到73.7%,相应的分电流密度为-428.3 mA·cm⁻²,高于大多数报道的铜基催化剂。通过理论计算进一步探索表明,与参考Cu-PD催化剂相比,Cu-PD-2-MBI中插入的2-MBI使Cu位点的d带中心从-2.63 eV 移至-1.86 eV,并降低了生成CH₄过程中COOH和CHO中间体的形成能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验