Lanting Vincent R, Takada Toshihiko, Bosch Floris T M, Marshall Andrea, Grosso Michael A, Young Annie M, Lee Agnes Y Y, Di Nisio Marcello, Raskob Gary E, Kamphuisen Pieter W, Büller Harry R, van Es Nick
Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Department of Internal Medicine, Tergooi Hospital, Hilversum, The Netherlands.
Thromb Haemost. 2025 Jun;125(6):589-596. doi: 10.1055/a-2418-3960. Epub 2024 Sep 19.
About 7% of patients with cancer-associated venous thromboembolism (CAT) develop a recurrence during anticoagulant treatment. Identification of high-risk patients may help guide treatment decisions.To identify clinical predictors and develop a prediction model for on-treatment recurrent CAT.For this individual patient data meta-analysis, we used data from four randomized controlled trials evaluating low-molecular-weight heparin or direct oral anticoagulants (DOACs) for CAT (Hokusai VTE Cancer, SELECT-D, CLOT, and CATCH). The primary outcome was adjudicated on-treatment recurrent CAT during a 6-month follow-up. A clinical prediction model was developed using multivariable logistic regression analysis with backward selection. This model was validated using internal-external cross-validation. Performance was assessed by the c-statistic and a calibration plot.After excluding patients using vitamin K antagonists, the combined dataset comprised 2,245 patients with cancer and acute CAT who were treated with edoxaban (23%), rivaroxaban (9%), dalteparin (47%), or tinzaparin (20%). Recurrent on-treatment CAT during the 6-month follow-up occurred in 150 (6.7%) patients. Predictors included in the final model were age (restricted cubic spline), breast cancer (odds ratio [OR]: 0.42; 95% confidence interval [CI]: 0.20-0.87), metastatic disease (OR: 1.44; 95% CI: 1.01-2.05), treatment with DOAC (OR: 0.66; 95% CI: 0.44-0.98), and deep vein thrombosis only as an index event (OR: 1.72; 95% CI: 1.31-2.27). The c-statistic of the model was 0.63 (95% CI: 0.54-0.72) after internal-external cross-validation. Calibration varied across studies.The prediction model for recurrent CAT included five clinical predictors and has only modest discrimination. Prediction of recurrent CAT at the initiation of anticoagulation remains challenging.
约7%的癌症相关静脉血栓栓塞(CAT)患者在抗凝治疗期间会复发。识别高危患者可能有助于指导治疗决策。识别临床预测因素并建立治疗期间复发性CAT的预测模型。对于这项个体患者数据荟萃分析,我们使用了四项随机对照试验的数据,这些试验评估了低分子量肝素或直接口服抗凝剂(DOACs)用于CAT的情况(HOokusai VTE癌症试验、SELECT-D试验、CLOT试验和CATCH试验)。主要结局是在6个月随访期间判定的治疗期间复发性CAT。使用多变量逻辑回归分析和向后选择建立临床预测模型。该模型使用内部-外部交叉验证进行验证。通过c统计量和校准图评估模型性能。在排除使用维生素K拮抗剂的患者后,合并数据集包括2245例患有癌症和急性CAT且接受依度沙班(23%)、利伐沙班(9%)、达肝素(47%)或替扎肝素(20%)治疗的患者。在6个月随访期间,150例(6.7%)患者出现治疗期间复发性CAT。最终模型纳入的预测因素包括年龄(受限立方样条)、乳腺癌(比值比[OR]:0.42;95%置信区间[CI]:0.20-0.87)、转移性疾病(OR:1.44;95%CI:1.01-2.05)、DOAC治疗(OR:0.66;95%CI:0.44-0.98)以及仅以深静脉血栓形成作为索引事件(OR:1.72;95%CI:1.31-2.27)。经过内部-外部交叉验证后,模型的c统计量为0.63(95%CI:0.54-0.72)。校准在各研究中有所不同。复发性CAT的预测模型包括五个临床预测因素,且区分度仅为中等。在抗凝治疗开始时预测复发性CAT仍然具有挑战性。