Suppr超能文献

将患者报告的生活质量数据纳入心力衰竭风险评估

Integration of Patient Reported Quality-of-life Data into Risk Assessment in Heart Failure.

作者信息

Sideris Konstantinos, Zhang Mingyuan, Wohlfahrt Peter, Siu Alfonso F, Shen Jincheng, Carter Spencer, Kyriakopoulos Christos P, Taleb Iosif, Wever-Pinzon Omar, Shah Kevin, Selzman Craig H, Rodriguez-Correa Carlos, Kapelios Chris, Brinker Lina, Alharethi Rami, Hess Rachel, Drakos Stavros G, Steinberg Benjamin A, Fang James C, Kfoury Abdallah G, Melenovsky Vojtech, Greene Tom, Spertus John A, Stehlik Josef

机构信息

Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah.

Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.

出版信息

J Card Fail. 2025 May;31(5):761-770. doi: 10.1016/j.cardfail.2024.08.053. Epub 2024 Sep 18.

Abstract

BACKGROUND

Optimal management of outpatients with heart failure (HF) requires serially updating the estimates of their risk for adverse clinical outcomes to guide treatment. Patient-reported outcomes (PROs) are becoming increasingly used in clinical care. The purpose of this study was to determine whether the inclusion of PROs can improve the risk prediction for HF hospitalization and death in ambulatory patients with HF.

METHODS AND RESULTS

We included consecutive patients with HF with reduced ejection fraction (HFrEF) and HF with preserved EF (HFpEF) seen in a HF clinic between 2015 and 2019 who completed PROs as part of routine care. Cox regression with a least absolute shrinkage and selection operator regularization and gradient boosting machine analyses were used to estimate risk for a combined outcome of HF hospitalization, heart transplant, left ventricular assist device implantation, or death. The performance of the prediction models was evaluated with the time-dependent concordance index (C). Among 1165 patients with HFrEF (mean age 59.1 ± 16.1, 68% male), the median follow-up was 487 days. Among 456 patients with HFpEF (mean age 64.2 ± 16.0 years, 55% male) the median follow-up was 494 days. Gradient boosting regression that included PROs had the best prediction performance - C 0.73 for patients with HFrEF and 0.74 in patients with HFpEF, and showed very good stratification of risk by time to event analysis by quintile of risk. The Kansas City Cardiomyopathy Questionnaire overall summary score, visual analogue scale and Patient Reported Outcomes Measurement Information System dimensions of satisfaction with social roles and physical function had high variable importance measure in the models.

CONCLUSIONS

PROs improve risk prediction in both HFrEF and HFpEF, independent of traditional clinical factors. Routine assessment of PROs and leveraging the comprehensive data in the electronic health record in routine clinical care could help more accurately assess risk and support the intensification of treatment in patients with HF.

摘要

背景

对心力衰竭(HF)门诊患者进行最佳管理需要不断更新其不良临床结局风险的评估,以指导治疗。患者报告结局(PROs)在临床护理中的应用越来越广泛。本研究的目的是确定纳入PROs是否能改善门诊HF患者HF住院和死亡的风险预测。

方法与结果

我们纳入了2015年至2019年期间在HF诊所就诊的连续的射血分数降低的HF(HFrEF)患者和射血分数保留的HF(HFpEF)患者,这些患者作为常规护理的一部分完成了PROs。使用带有最小绝对收缩和选择算子正则化的Cox回归以及梯度提升机分析来估计HF住院、心脏移植、左心室辅助装置植入或死亡的综合结局风险。预测模型的性能通过时间依赖性一致性指数(C)进行评估。在1165例HFrEF患者中(平均年龄59.1±16.1岁,68%为男性),中位随访时间为487天。在456例HFpEF患者中(平均年龄64.2±16.0岁,55%为男性),中位随访时间为494天。纳入PROs的梯度提升回归具有最佳预测性能——HFrEF患者的C为0.73,HFpEF患者的C为0.74,并且通过事件发生时间分析按风险五分位数显示出非常好的风险分层。堪萨斯城心肌病问卷总体总结评分、视觉模拟量表以及患者报告结局测量信息系统中对社会角色和身体功能的满意度维度在模型中具有较高的变量重要性度量。

结论

PROs可改善HFrEF和HFpEF患者的风险预测,独立于传统临床因素。在常规临床护理中对PROs进行常规评估并利用电子健康记录中的综合数据,有助于更准确地评估风险并支持加强对HF患者的治疗。

相似文献

9
Evaluation of the ventricular assist device programme in the UK.英国心室辅助装置项目评估
Health Technol Assess. 2006 Nov;10(48):1-119, iii-iv. doi: 10.3310/hta10480.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验