Suppr超能文献

基于 X 射线计算机断层扫描图像的腰大肌分割的三维数值方案。

Three-dimensional numerical schemes for the segmentation of the psoas muscle in X-ray computed tomography images.

机构信息

MIDA, Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, Genova, 16145, Italy.

IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy.

出版信息

BMC Med Imaging. 2024 Sep 19;24(1):251. doi: 10.1186/s12880-024-01423-0.

Abstract

The analysis of the psoas muscle in morphological and functional imaging has proved to be an accurate approach to assess sarcopenia, i.e. a systemic loss of skeletal muscle mass and function that may be correlated to multifactorial etiological aspects. The inclusion of sarcopenia assessment into a radiological workflow would need the implementation of computational pipelines for image processing that guarantee segmentation reliability and a significant degree of automation. The present study utilizes three-dimensional numerical schemes for psoas segmentation in low-dose X-ray computed tomography images. Specifically, here we focused on the level set methodology and compared the performances of two standard approaches, a classical evolution model and a three-dimension geodesic model, with the performances of an original first-order modification of this latter one. The results of this analysis show that these gradient-based schemes guarantee reliability with respect to manual segmentation and that the first-order scheme requires a computational burden that is significantly smaller than the one needed by the second-order approach.

摘要

对腰大肌进行形态和功能成像分析已被证明是评估肌肉减少症(一种全身性的骨骼肌质量和功能丧失,可能与多种病因学方面相关)的一种准确方法。要将肌肉减少症评估纳入放射学工作流程,就需要实现用于图像处理的计算管道,以保证分割的可靠性和较高的自动化程度。本研究利用三维数值方案对低剂量 X 射线计算机断层扫描图像中的腰大肌进行分割。具体来说,我们专注于水平集方法,并比较了两种标准方法(经典演化模型和三维测地线模型)以及该模型的一个原始一阶修正的性能。该分析的结果表明,这些基于梯度的方法相对于手动分割具有可靠性,而一阶方法的计算负担明显小于二阶方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验