Soler-Garzón Alvaro, Mulube Mwiinga, Kamfwa Kelvin, Lungu Davies M, Hamabwe Swivia, Roy Jayanta, Salegua Venâncio, Fourie Deidré, Porch Timothy G, McClean Phillip E, Miklas Phillip N
Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States.
Department of Plant Science, University of Zambia, Lusaka, Zambia.
Front Plant Sci. 2024 Sep 5;15:1469381. doi: 10.3389/fpls.2024.1469381. eCollection 2024.
Bacterial brown spot (BBS) caused by pv. (), common bacterial blight (CBB) caused by pv. () and subsp. (), and halo bacterial blight (HBB), caused by pv. (), are major bacterial diseases that severely affect common bean yields and global food security. Andean-origin dry beans, representing large-seeded market classes, are particularly susceptible. Using 140,325 SNPs, a multi-locus GWAS was conducted on subsets of the Andean diversity panel (ADP) phenotyped for BBS in South Africa, CBB in Puerto Rico, South Africa, and Zambia, and HBB in South Africa, through natural infection, artificial inoculation, or both. Twenty-four QTL associated with resistance were identified: nine for BBS, eight for CBB, and seven for HBB. Four QTL intervals on Pv01, Pv03, Pv05, and Pv08 overlapped with BBS and HBB resistance. A genomic interval on Pv01, near the gene, which determines growth habit, was linked to resistance to all three pathogens. Different QTLs were detected for BBS and CBB resistance when phenotyped under natural infection versus artificial inoculation. These results underscore the importance of combining phenotyping methods in multi-GWAS to capture the full genetic spectrum. Previously recognized CBB resistance QTL SAP6 and SU91 and HBB resistance QTL HB4.2, and HB5.1, were observed. Other common (MAF >0.25) and rare (MAF <0.05) resistance QTL were also detected. Overall, these findings enhance the understanding and utilization of bacterial resistance present in ADP for the development of common beans with improved resistance.
由丁香假单胞菌菜豆致病变种(Pseudomonas syringae pv. syringae)引起的细菌性褐斑病(BBS)、由菜豆假单胞菌(Pseudomonas syringae pv. phaseolicola)和大豆细菌性斑点病菌(Pseudomonas syringae subsp. glycinea)引起的普通细菌性疫病(CBB)以及由菜豆晕斑病菌(Pseudomonas syringae pv. phaseolicola)引起的晕斑细菌性疫病(HBB),是严重影响普通菜豆产量和全球粮食安全的主要细菌性病害。源自安第斯地区的干豆,代表着大粒市场类别,尤其易感。利用140325个单核苷酸多态性(SNP),通过自然感染、人工接种或两者结合的方式,对安第斯多样性面板(ADP)的子集进行了多位点全基因组关联研究(GWAS),这些子集在南非针对BBS、在波多黎各、南非和赞比亚针对CBB以及在南非针对HBB进行了表型分析。共鉴定出24个与抗性相关的数量性状基因座(QTL):9个与BBS抗性相关、8个与CBB抗性相关、7个与HBB抗性相关。Pv01、Pv03、Pv05和Pv08上的4个QTL区间与BBS和HBB抗性重叠。Pv01上靠近决定生长习性的基因的一个基因组区间与对所有三种病原菌的抗性相关。在自然感染与人工接种下表型分析时,检测到BBS和CBB抗性的不同QTL。这些结果强调了在多位点GWAS中结合表型分析方法以捕捉完整遗传谱的重要性。观察到了先前公认的CBB抗性QTL SAP6和SU91以及HBB抗性QTL HB4.2和HB5.1。还检测到了其他常见(最小等位基因频率[MAF]>0.25)和罕见(MAF<0.05)的抗性QTL。总体而言,这些发现增进了对ADP中存在的细菌性抗性的理解和利用,以培育抗性更强的普通菜豆。