Suppr超能文献

使用定制深度学习模型提高全景X线片中龋齿和牙体异常的诊断准确性。

Enhanced Diagnostic Accuracy for Dental Caries and Anomalies in Panoramic Radiographs Using a Custom Deep Learning Model.

作者信息

Bhat Suvarna, Birajdar Gajanan, Patil Mukesh

机构信息

Electronics Engineering, Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, IND.

Computer Engineering, Vidyalankar Institute of Technology, Mumbai, IND.

出版信息

Cureus. 2024 Aug 20;16(8):e67315. doi: 10.7759/cureus.67315. eCollection 2024 Aug.

Abstract

Background  Dental caries is one of the most prevalent conditions in dentistry worldwide. Early identification and classification of dental caries are essential for effective prevention and treatment. Panoramic dental radiographs are commonly used to screen for overall oral health, including dental caries and tooth anomalies. However, manual interpretation of these radiographs can be time-consuming and prone to human error. Therefore, an automated classification system could help streamline diagnostic workflows and provide timely insights for clinicians. Methods This article presents a deep learning-based, custom-built model for the binary classification of panoramic dental radiographs. The use of histogram equalization and filtering methods as preprocessing techniques effectively addresses issues related to irregular illumination and contrast in dental radiographs, enhancing overall image quality. By incorporating three separate panoramic dental radiograph datasets, the model benefits from a diverse dataset that improves its training and evaluation process across a wide range of caries and abnormalities. Results The dental radiograph analysis model is designed for binary classification to detect the presence of dental caries, restorations, and periapical region abnormalities, achieving accuracies of 97.01%, 81.63%, and 77.53%, respectively. Conclusions The proposed algorithm extracts discriminative features from dental radiographs, detecting subtle patterns indicative of tooth caries, restorations, and region-based abnormalities. Automating this classification could assist dentists in the early detection of caries and anomalies, aid in treatment planning, and enhance the monitoring of dental diseases, ultimately improving and promoting patients' oral healthcare.

摘要

背景

龋齿是全球牙科领域最普遍的病症之一。龋齿的早期识别和分类对于有效预防和治疗至关重要。口腔全景X光片常用于筛查整体口腔健康状况,包括龋齿和牙齿异常。然而,人工解读这些X光片可能耗时且容易出现人为误差。因此,自动化分类系统有助于简化诊断流程,并为临床医生提供及时的见解。

方法

本文提出了一种基于深度学习的定制模型,用于口腔全景X光片的二分类。使用直方图均衡化和滤波方法作为预处理技术,有效解决了口腔X光片中与不规则光照和对比度相关的问题,提高了整体图像质量。通过合并三个独立的口腔全景X光片数据集,该模型受益于多样化的数据集,从而在广泛的龋齿和异常情况下改进其训练和评估过程。

结果

口腔X光片分析模型专为二分类设计,用于检测龋齿、修复体和根尖区域异常的存在,准确率分别达到97.01%、81.63%和77.53%。

结论

所提出的算法从口腔X光片中提取判别特征,检测出指示龋齿、修复体和基于区域的异常的细微模式。自动化这种分类可以帮助牙医早期发现龋齿和异常,辅助治疗计划制定,并加强对牙科疾病的监测,最终改善和促进患者的口腔保健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/524d/11412602/32048011f2bd/cureus-0016-00000067315-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验