Suppr超能文献

利用机器学习预测医院再入院情况。

Forecasting Hospital Readmissions with Machine Learning.

作者信息

Michailidis Panagiotis, Dimitriadou Athanasia, Papadimitriou Theophilos, Gogas Periklis

机构信息

Department of Economics, Democritus University of Thrace, 69100 Komotini, Greece.

Department of Economics, University of Derby, Derby DE22 1GB, UK.

出版信息

Healthcare (Basel). 2022 May 25;10(6):981. doi: 10.3390/healthcare10060981.

Abstract

Hospital readmissions are regarded as a compounding economic factor for healthcare systems. In fact, the readmission rate is used in many countries as an indicator of the quality of services provided by a health institution. The ability to forecast patients' readmissions allows for timely intervention and better post-discharge strategies, preventing future life-threatening events, and reducing medical costs to either the patient or the healthcare system. In this paper, four machine learning models are used to forecast readmissions: support vector machines with a linear kernel, support vector machines with an RBF kernel, balanced random forests, and weighted random forests. The dataset consists of 11,172 actual records of hospitalizations obtained from the General Hospital of Komotini "Sismanogleio" with a total of 24 independent variables. Each record is composed of administrative, medical-clinical, and operational variables. The experimental results indicate that the balanced random forest model outperforms the competition, reaching a sensitivity of 0.70 and an AUC value of 0.78.

摘要

医院再入院被视为医疗系统中一个复杂的经济因素。事实上,再入院率在许多国家被用作衡量医疗机构所提供服务质量的指标。预测患者再入院的能力有助于及时进行干预并制定更好的出院后策略,预防未来危及生命的事件,并降低患者或医疗系统的医疗成本。在本文中,使用了四种机器学习模型来预测再入院情况:线性核支持向量机、径向基函数(RBF)核支持向量机、平衡随机森林和加权随机森林。该数据集由从科莫蒂尼“西斯马诺格莱奥”综合医院获得的11172条实际住院记录组成,共有24个自变量。每条记录由行政、医疗临床和运营变量组成。实验结果表明,平衡随机森林模型优于其他模型,灵敏度达到0.70,曲线下面积(AUC)值为0.78。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa49/9222500/cbe817a59292/healthcare-10-00981-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验