Rotkopf Lukas T, Ziener Christian H, von Knebel-Doeberitz Nikolaus, Wolf Sabine D, Hohmann Anja, Wick Wolfgang, Bendszus Martin, Schlemmer Heinz-Peter, Paech Daniel, Kurz Felix T
Department of Radiology, German Cancer Research Center, Heidelberg, Germany.
Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
Med Phys. 2024 Dec;51(12):9031-9040. doi: 10.1002/mp.17415. Epub 2024 Sep 20.
Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer from a lack of standardization.
We propose a physics-informed deep learning framework which is capable of analyzing dynamic susceptibility contrast perfusion MRI data and recovering the dynamic tissue response with high accuracy.
The framework uses physics-informed neural networks (PINNs) to learn the voxel-wise TRF, which represents the dynamic response of the local vascular network to the contrast agent bolus. The network output is stabilized by total variation and elastic net regularization. Parameter maps of normalized cerebral blood flow (nCBF) and volume (nCBV) are then calculated from the predicted residue functions. The results are validated using extensive comparisons to values derived by conventional Tikhonov-regularized singular value decomposition (TiSVD), in silico simulations and an in vivo dataset of perfusion MRI exams of patients with high-grade gliomas.
The simulation results demonstrate that PINN-derived residue functions show a high concordance with the true functions and that the calculated values of nCBF and nCBV converge towards the true values for higher contrast-to-noise ratios. In the in vivo dataset, we find high correlations between conventionally derived and PINN-predicted perfusion parameters (Pearson's rho for nCBF: and nCBV: ) and very high indices of image similarity (structural similarity index for nCBF: and for nCBV: ).
PINNs can be used to analyze perfusion MRI data and stably recover the response functions of the local vasculature with high accuracy.
灌注磁共振成像(MRI)在神经血管或神经肿瘤疾病的诊断和监测中起着核心作用。然而,传统的处理技术在捕捉灌注动力学相关特征方面能力有限,且缺乏标准化。
我们提出一种基于物理知识的深度学习框架,该框架能够分析动态对比增强灌注MRI数据,并高精度地恢复动态组织反应。
该框架使用基于物理知识的神经网络(PINNs)来学习体素级的组织残留函数(TRF),它代表局部血管网络对造影剂团注的动态反应。通过总变差和弹性网正则化来稳定网络输出。然后根据预测的残留函数计算归一化脑血流量(nCBF)和血容量(nCBV)的参数图。通过与传统的蒂霍诺夫正则化奇异值分解(TiSVD)得出的值、计算机模拟以及高级别胶质瘤患者灌注MRI检查的体内数据集进行广泛比较,对结果进行验证。
模拟结果表明,PINN得出的残留函数与真实函数高度一致,并且对于更高的对比噪声比,nCBF和nCBV的计算值趋向于真实值。在体内数据集中,我们发现传统得出的和PINN预测的灌注参数之间具有高度相关性(nCBF的皮尔逊相关系数: ,nCBV的皮尔逊相关系数: )以及非常高的图像相似性指数(nCBF的结构相似性指数: ,nCBV的结构相似性指数: )。
PINNs可用于分析灌注MRI数据,并能高精度地稳定恢复局部脉管系统的反应函数。