Suppr超能文献

一个互联的数据基础设施,以支持大规模罕见病研究。

An interconnected data infrastructure to support large-scale rare disease research.

机构信息

Department of Genetics, University of Groningen, University Medical Center Groningen, HPC CB50, P.O. Box 30001, Groningen, 9700 RB, The Netherlands.

Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028, Barcelona, Spain.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae058.

Abstract

The Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analyzing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing, and multiomics data. Here we report on the data infrastructure devised and created to support this co-analysis. This infrastructure enables users to store, find, connect, and analyze data and metadata in a collaborative manner. Pseudonymized phenotypic and raw experimental data are submitted to the RD-Connect Genome-Phenome Analysis Platform and processed through standardized pipelines. Resulting files and novel produced omics data are sent to the European Genome-Phenome Archive, which adds unique file identifiers and provides long-term storage and controlled access services. MOLGENIS "RD3" and Café Variome "Discovery Nexus" connect data and metadata and offer discovery services, and secure cloud-based "Sandboxes" support multiparty data analysis. This successfully deployed and useful infrastructure design provides a blueprint for other projects that need to analyze large amounts of heterogeneous data.

摘要

Solve-RD 项目汇集了来自 15 个国家的 51 个研究所的临床医生、科学家和患者代表,共同合作对罕见病(RDs)进行基因诊断(“解决”)。该项目旨在通过对数千例 RD 病例的表型、家系、外显子/基因组测序和多组学数据进行联合分析,显著提高诊断成功率。在此,我们报告了为支持这种联合分析而设计和创建的数据基础架构。该基础架构使用户能够以协作方式存储、查找、连接和分析数据和元数据。经过去识别化名处理的表型和原始实验数据提交到 RD-Connect 基因组-表型分析平台,并通过标准化管道进行处理。生成的文件和新产生的组学数据被发送到欧洲基因组-表型档案库,该档案库添加了唯一的文件标识符,并提供长期存储和受控访问服务。MOLGENIS“RD3”和 Café Variome“Discovery Nexus”连接数据和元数据并提供发现服务,安全的基于云的“沙盒”支持多方数据分析。这种成功部署和实用的数据基础架构设计为需要分析大量异构数据的其他项目提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5549/11413801/86366a0e2252/giae058fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验