Suppr超能文献

利用激光诱导击穿光谱法和 ICP-MS 对獐牙菜属药用植物进行成分分析。

Compositional analysis of Swertia chirayita medicinal plant using laser-induced breakdown spectroscopy and ICP-MS.

机构信息

Department of Physics, University of Kotli Azad Jammu and Kashmir, Kotli, Pakistan.

Department of Physics, Division of Science & Technology, University of Education, Lahore, Pakistan.

出版信息

PLoS One. 2024 Sep 20;19(9):e0309647. doi: 10.1371/journal.pone.0309647. eCollection 2024.

Abstract

One of the most significant medicinal plants used to treat numerous illnesses is Swertia chirayita. The present study demonstrated the compositional analysis of the Swertia chirayita (S. chirayita) plant using an emerging and non-destructive laser-induced breakdown spectroscopy (LIBS) technique. Mg, Ca, K, Fe, Sr, Cr, and Na were verified as necessary elements by the optical emission investigations, while Al, Ti, Si, Ba, Mn, and Li were non-essential. Using the Boltzmann plot technique with stark broadening parameters, plasma temperature and electron number density were calculated in the range of (10,000-12,000) K ±1000 K and (1.5-1.8) × 1017 cm-3, respectively. Finally, compositional analysis was carried out using calibration-free (CF-LIBS) analysis and results were compared with ICP-MS. It was observed that the concentration of Ca and Fe is higher than other detected elements. All the toxic elements are found to be within the safe limit. So, this medicinal plant can be used to cure a variety of diseases that arise due to the deficiency of these elements.

摘要

用于治疗多种疾病的最重要药用植物之一是獐牙菜。本研究使用新兴的非破坏性激光诱导击穿光谱(LIBS)技术对獐牙菜(S. chirayita)植物进行了成分分析。通过光学发射研究验证了 Mg、Ca、K、Fe、Sr、Cr 和 Na 是必需元素,而 Al、Ti、Si、Ba、Mn 和 Li 是非必需元素。使用斯塔克展宽参数的玻尔兹曼图技术,在(10000-12000)K±1000K 的范围内计算了等离子体温度和电子数密度,分别为(1.5-1.8)×1017cm-3。最后,使用无标样(CF-LIBS)分析进行了成分分析,并将结果与 ICP-MS 进行了比较。观察到 Ca 和 Fe 的浓度高于其他检测到的元素。所有有毒元素都被发现处于安全范围内。因此,这种药用植物可用于治疗因缺乏这些元素而引起的各种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28a/11414975/b18d2240c72a/pone.0309647.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验