Department of Ophthalmology, University of California, San Francisco, California 94143, USA; email:
Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94143, USA.
Annu Rev Vis Sci. 2021 Sep 15;7:105-128. doi: 10.1146/annurev-vision-100119-124713.
Our sense of sight relies on photoreceptors, which transduce photons into the nervous system's electrochemical interpretation of the visual world. These precious photoreceptors can be disrupted by disease, injury, and aging. Once photoreceptors start to die, but before blindness occurs, the remaining retinal circuitry can withstand, mask, or exacerbate the photoreceptor deficit and potentially be receptive to newfound therapies for vision restoration. To maximize the retina's receptivity to therapy, one must understand the conditions that influence the state of the remaining retina. In this review, we provide an overview of the retina's structure and function in health and disease. We analyze a collection of observations on photoreceptor disruption and generate a predictive model to identify parameters that influence the retina's response. Finally, we speculate on whether the retina, with its remarkable capacity to function over light levels spanning nine orders of magnitude, uses these same adaptational mechanisms to withstand and perhaps mask photoreceptor loss.
我们的视觉依赖于光感受器,它将光子转化为神经系统对视觉世界的电化学解释。这些宝贵的光感受器可能会被疾病、损伤和衰老破坏。一旦光感受器开始死亡,但在失明发生之前,剩余的视网膜电路可以承受、掩盖或加剧光感受器的缺陷,并可能对新发现的视力恢复疗法有反应。为了使视网膜对治疗的反应最大化,人们必须了解影响剩余视网膜状态的条件。在这篇综述中,我们概述了健康和疾病状态下视网膜的结构和功能。我们分析了一系列关于光感受器破坏的观察结果,并生成了一个预测模型,以确定影响视网膜反应的参数。最后,我们推测视网膜是否利用其在跨越九个数量级的光强度范围内的出色功能来承受并可能掩盖光感受器的损失,以及是否使用相同的适应机制。