Shida Yuuki, Kumagai Souto, Iwata Hiroyasu
Graduate School of Creative Science and Engineering, Waseda University, Tokyo, 169-8050, Japan.
Faculty of Science and Engineering, Waseda University, Tokyo, 169-8050, Japan.
Int J Comput Assist Radiol Surg. 2025 Jan;20(1):191-202. doi: 10.1007/s11548-024-03275-z. Epub 2024 Sep 20.
The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.
The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.
The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.
The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.
在机器人经胸超声心动图中寻找心脏组件是一个耗时的过程。本文提出了一种使用深度强化学习的心脏组件优化机器人导航系统,以实现一种高效且有效的心脏组件搜索技术。
所提出的方法引入了(i)一种优化的搜索行为生成算法,该算法可避免多个局部解并寻找最优解,以及(ii)一种优化的路径生成算法,该算法可使搜索路径最小化,从而实现短搜索时间。
使用所提出的方法进行二尖瓣搜索时,达到最优解的概率为74.4%,局部解停止时二尖瓣置信度损失率平均为16.3%,生成路径后的检查时间平均为48.6秒,这是传统方法时间成本的56.6%。
结果表明,所提出的方法提高了搜索效率,使用该方法在许多情况下都能搜索到最优位置,即使达到的是局部解而非最优解,二尖瓣的置信度损失率也较低。建议所提出的方法能够实现准确快速的机器人导航以找到心脏组件。